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1 Introduction

In our society the abilities of robots range from fulfilling repetitive tasks in industry over
vacuum cleaning service robots through autonomously operating in extreme environments.
The complex systems originating from electronics, informatics and mathematics therefore are
found from the bottom of the sea to space and are continuously improved by new technologies
and further research. Nevertheless, they come with one big disadvantage; when their capabili-
ties go beyond basic tasks and reach localization, mapping or planning, they tend to be really
expensive. This fact leads to a dramatic economic damage in cases of losing an advanced
robot, which is why their real usage fields often get limited.
This essay discusses a new approach for creating low cost mobile robotic platforms. Therefore,
we will now introduce the corresponding terminologies.

1.1 Mobile robots

The word robot was first introduced by Karel Čapek in 1921 within his book Rossum’s Uni-
versal Robots in which he describes a factory creating artificial people for working purposes
called the roboti coming from the Czech word robota meaning forced labour [Dic].
Nevertheless, a robot in this thesis is defined following the Oxford Dictionary as a mechan-
ical, virtual or artificial machine that is capable of carrying out a complex series of actions
automatically, especially one programmable by a computer [Pre10].
The next term that must be examined is mobile. Following the common definition, a device
with the capability to perform motion or to operate during motion can be considered to be
mobile. Furthermore, motion itself can be described as the changing of position according to
a reference point in function of time, consisting of the physical units displacement, direction,
velocity, acceleration and time [Nav14]. Consequently, mobile in a robotic context are devices
that are able to move by themselves and not fixed to one physical position or location. Under
this definition, also robotic arms like they are used in industrial factories are considered mobile
robots.
The wide range of mobile robots makes it necessary to specify the topic of the thesis further
so that we have a closer look at Unmanned Ground Vehicles (UGVs) and Automated Guided
Vehicles (AGVs), which are able to move on most environments mostly using propulsion
systems like wheels or tracks. By that other robots like flying devices or autonomous under-
water vehicles can not be discussed in detail as they have other specifications and therefore
properties which would unfortunately go beyond the scope of this bachelor thesis.
In order to find the main characteristics of UGVs and AGVs we now examine some of the most
important existing robotic ground vehicles and their manufacturers more closely. Starting by
one of the most successful civil and military industrial manufacturers, over a non-profit open
source approach think tank and finally coming to an excerpt of the university context.

1.1.1 iRobot

Still one of the most successful companies by the metric of sold service robots in the domestic
sector and therefore the most popular robot building one today is called iRobot.
Its original name has been Artificial Creatures Inc. and soon changed with one of the first
robots called the iRobot LE [iRo90], where the i was an acronym to internet and not like
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today’s interpretations are referring to Asimov’s I, Robot [Lin14]. During that period iRobot
followed behavior control and swarm implementations over the new medium.
Initially the pioneer in the robot industry, iRobot, got co-founded in 1990 by the entrepreneurs
Rodney Allen Brooks, Colin Angle and Helen Greiner which all have met as members of the
Massachusetts Institute of Technology (MIT) Computer Science and Artificial Intelligence
Laboratory (CSAIL).
The former Panasonic professor at MIT Brooks has been popularizing the actionist approach
of robotics or in other words has been one of the entrepreneurs of behavior based robotics.
With a master’s degree in computer science and a bachelor’s degree in electrical engineering,
Colin Angle realized one of the first projects of the company called Genghis, a six legged robot
as a part of his thesis. Later he led the development of behavior-controlled rovers for NASA
which lead to the mars rover Sojourner in 1997.
Whereas Hellen Grainer, also master of computer science and owning an additional bachelor’s
degree in mechanical engineering soon took over the business sector of the corporation. She
also led iRobot into the military market place [CyP14]. Grainer is a laureate with numerous
awards like Pioneer Award from the Association for Unmanned Vehicle Systems International
(AUVSI) in 2006 and is a member of the Open Source Robotics Foundation (OSRF) [OSR14].
To solve the demand of new robot engineers, in 2009 iRobot initiated the Starter Programs
for the Advancement of Robotics Knowledge (SPARK) as a part of the Science, Technology,
Engineering and Math (STEM) education initiative, which supports schools to teach robotics.

Service robots

’A service robot is a robot which operates semi- or fully autonomously to perform services
useful to the well-being of humans and equipment, excluding manufacturing operations’ in ISO
8373:2012 [IFR12]. By means of this definition by the International Federation of Robotics
(IFR) iRobot created multiple robots, from which we examine the most popular ones in more
detail.

Fig. 1: the iRobot Roomba 880
[Rob14f]

Fig. 2: the iRobot Scooba 450
[Rob14g]

Fig. 3: the iRobot Create [Ima14]

Roomba is a family of robot vacuum cleaners. After each cleaning cycle a Roomba returns
to its docking station to recharge. Consequently it reached a high level of customer value,
which is one of the main reasons that different versions of the autonomous service cleaners
have already sold about 10 million units since 2002 [iCi14b]. Therefore the Roomba is still
one of the most successful robot series.
We introduce Depth Sensors in section 3.2.1 in detail, but it is important to mention that
current versions of the Roomba use cheap cameras instead of expensive technologies like
light amplification by stimulated emission of radiation [Dic14]s (Lasers) to perform visual
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Simultaneous Localization and Mapping (vSLAM). However, a current Roomba still costs
about 600 to 700 USD at local distributors.

Scooba is a family of floor mopping domestic robots and the follower of the iRobot Braava
[iCi14c]. The Scooba series was released with limited quantities in late 2005 before a full
product release in 2006. It cleans floors with up to 300 square feet in three basic steps: first it
sweeps loose dirt and pre-soaks the area by leaving a thin sheen of soaped water. Next time
the Scooba crosses the same spot he scrubs with 600 rounds per minute (rpm) and vacuums
dirty water off the floor. Finally it squeegee-finishs the spot from remaining dirt. Path finding
algorithms require all three stages to occur at the same time, which among other things like
refilling the robot after a finished cleaning cycle reduces its customer value.
Following the Roomba price philosophy, a current Scooba also costs about 600 USD plus the
required drying dock with additional 100 USD.

Create After the first units of the Roomba were released technique enthusiasts soon tried
to control it by custom software which led iRobot to release an application programming
interface (API) for the serial communication [Eng14]. For that reason the serial port was
made easily accessible to make modifications easy to perform by the iRobot Roomba Open
Interface (ROI) [Wir10b]. In 2007 the company went one step further and created a new
robot based on the Roomba 400 series. They explicitly designed the so called Create for
robotics development by removing the cleaning abilities and replacing it by a cargo bay that
can hold a usual Single Board Computer (SBC). It includes an embedded computer ready
for serial communication. As a consequence, all computers including laptops with a serial
communication device are able to run the robot. Soon many robotic frameworks implemented
the API and subsequently are able to control the real world robot.
In 2010 a student at MIT’s Personal Robotics Group called Philipp Robbel used the Create
to realise a low cost mobile robot with a Microsoft Kinect [Wir10a]. This project has been
part of the Create Challenge where iRobot was offering 5000 USD with the goal of creating
an ’innovative robot that’s functional, helpful, entertaining, whimsical or simply amazing’
[iSu07].
Though the poor availability of the Create the price varies heavily between 130 EUR [Zag14]
and 300 EUR online.

Military robots

Broadly defined, military robots can be found since the soviet teletanks and the Goliath
teleoperated mobile mine, which have been created since World War II. Since then, numerous
unmanned vehicles and airplanes have been created for military purposes and therefore are
considered as military robots in this thesis.
Already in its early stages iRobot was researching in the military sector. Ariel and Fetch were
the first two UGVs to detect and dispose land mines both on ground and sea, but the most
successful so far with about 4500 sold devices is the multipurpose mobile robot PackBot.

PackBot is a series of military AGVs that e.g. have been used in Fukushima nuclear plant
after the 2011 earthquake following tsunami and the World Trade Center on 9/11.
The PackBot as shown in Fig.4 was developed after winning a Defense Advanced Research
Projects Agency (DARPA) contract in 1998 [iRo14a] and has led to the current base model
the PackBot 510.
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Fig. 4: the iRobot PackBot 510 E.T
[WiM14]

This mobile robot can be used in many different sce-
narios because of its ability to climb stairs, role over
rubble, traverses rocks, mud and snow at speeds up to
5.8𝑚𝑝ℎ. Furthermore it has a modular design by pro-
viding several cargo bays. Those can be equipped with
a variety of sensor boxes, which enables the PackBot
to be used for a lot of tasks like searching buildings,
disposing bombs or surveillance purposes. In case that
a PackBot flips during an operation, it is capable of
self-righting.
A prerequisite for running the PackBot is a so called
Operator Control Unit (OCU), which is a special 15 inch outdoor laptop. The data sheet of
the PackBot [iCi14a] also reveals that it can be run up to four hours or 10 miles of travel
with two batteries. The base system weights 10.89𝑘𝑔 without extensions like arms, cameras
or accumulators.
Another interesting fact to mention is the PackBots ability to communicate by 4.9𝑔ℎ𝑧 mesh
networking - in a simple setup between robot and OCU.

Fig. 5: the iRobot Negotiator [iRo14b]

Negotiator is an AGV that was developed based on
the more powerful PackBot in 2008.
As a lower cost version of the PackBot it was designed
to be more affordable by law enforcement, firemen and
other public safety officials to replace humans in dan-
gerous situations. Examples are burning houses, con-
taminated areas or negotiations where operators are
required to evaluate dangerous situations from a safe
distance [tJ08].
The slimmed down robot, as illustrated in Fig.5, is
equipped with a color video and low light infrared
camera which gets supported by an additional infrared
LED array for illuminating dark surroundings. It allows several additional modules like a
day/night pan and tilt camera systems, flood lights or a MultiRAE Plus gas monitor detec-
tion system.
The two nickel metal hydride (NiMH) batteries are capable of providing between three to six
hours of runtime depending on usage and allow a rapid charging system which charges faster
than comparable lithium-ion batteries. This enables the robot to move at 3.1𝑚𝑝ℎ.
The entry price point can be estimated around the 20 000 USD mark. [Giz08]

1.1.2 Boston Dynamics

Boston Dynamics is a high-tech research company that was created as a spin-off from MIT
by the National Academy of Engineering member Marcus Raibert in 1992. As a pioneer of
legged dynamics and locomotion in robotics, he and his colleagues showed that it is possible
to balance one, two or four legged machines to be stable and furthermore to be able to adapt
to special environments very well.
In 1980 Dr. Raibert originally created the Leg Lab, a research laboratory to explore walking
machines at Carnegie Mellon University. After that, he moved to the laboratory to MIT
before starting his own company with simulation software for the US military.
By his definition only half of the earth’s landmass is accessible to existing wheeled and tracked
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vehicles, which is why Boston Dynamics mostly develops multiple legged robots including
humanoids like PETMAN or animal based ones like BigDog, LS3 or Rise. The company also
did some important progress in the field of AGVs with the RHex or the SandFlea by adding
animal like behaviour and features.
Most of their projects are funded by DARPA or other military facilities. Since 13 December
2013, when the company was acquired by Google, new fields of usage like a combination of
the Google Car Project and PETMAN for fully automated delivery of packages are targeted.
Consequently, today, the company is managed among other robotic companies acquired by
Google by Andy Rubin, who is so far known as the inventor of the smartphone operating
system Android [NYT13].

BigDog

In modern warfare, soldiers need to carry more and more equipment during operations in
rough terrain. Currently it is unavoidable to use mules or donkeys which are able to carry
one third of their body weight, but they tend to be difficult to handle. Furthermore the
animals are lacking in features like being able to be sent ahead or jump off from an aircraft.
Additionally they mostly require attention even if they are not used, which among other
things means that it is not possible to store them in warehouses. [Rai10]

Fig. 6: the Boston Dynamics BigDog

[Qwr14]

In 2005 Boston Dynamics created a four legged mobile
robot called BigDog which is able to climb slopes up
to 35 degrees. BigDogs development already started
in 2003 in partnership with the British robot maker
Foster-Miller, NASA’s Jet Propulsion Laboratory and
Harvard.
Powered by a go cart engine and moved by a hydraulic
pump like they are used in aircrafts for the last 30
years, the BigDog in Fig.6 is a twenty joints mobile
system. Each leg consists of four back drivable hy-
draulic actuators, a powerful servo motor and a spring
to passively adjust balance. The usage of hydrome-
chanical principles allow a high power to weight ratio
of about 1200 Watts to two pounds. That makes the
usage of gears obsolete and directly pushes the power
to the floor.
The main issue of a legged robot is its balance. For
solving that task, Dr. Raibert and his team divided
the problem into three parts. First, providing the counter reaction to gravity by the legs that
are currently in contact to the ground called Support. Next, the stopping to tip over during
the locomotion process, while center of mass is not in center of the robot’s body using inverted
pendulums as internal sensors called Balance. Finally, the task of keeping the body of the
robot at a desired place or in a special position during external influences like foot slipping
or lateral velocity - called Posture.
Because all three problems are solved internally with a high level of autonomy, it is possible
to easily control the robot with a single remote controller. This also makes it possible to use
higher level algorithms for navigation like following squad leaders can be successfully imple-
mented. An important prerequisite for the functional balance system is good environment
awareness achieved by a sensor system. Therefore the BigDog consists of external sensors like
GPS, a ring laser, a gyroscope, a Light radar (Lidar) and sensors for stereo vision. Further-
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more, internal sensors for values like hydraulic pressure flows, engine temperature, forces and
angles around the joints are required. In total the BigDog has about 50 sensors depending on
the final setup. Additional controls are needed for problems like estimation of odometry by the
legs in support or traction control to avoid and recover from foot slips. Additionally, reacting
to terrain disturbances in the stepping cycle or swinging legs to avoid collisions are essential.
When responsibly adjusting the engine power the BigDog needs about two gallons of gasoline
per mile. By additional tanks with up to 450 pounds of weight this allows a maximum range
of 12.8 miles. The total payload the BigDog can carry heavily depends on the terrain and
lies between 100 pounds on trial terrain and 240 pounds on flat. At the moment the system
has three movement modes: walking at one miles per hour (mph), trotting at three mph, and
jogging at up to six mph.
There is a current project for a successor called Legged Squad Support System (LS3) funded
by DARPA and the United States Marine Corps. It shall fulfill higher demands in hardware
like greater ranges and run time or avoiding the loud motor noise that is emitted. Boston
Dynamics experimented with electronic motors inside the BigDog and was faced with a run
time of only ten minutes and a battery consuming the total carry capacity [Rai10].
One problem of the BigDog is the lack of self righting - in case the robot gets on the ground
like lying on its side, it is presently not able to get up again without the help of an operator.
This should be fixed by the LS3 with some adjustments in hardware design like the usage
of shoulders. There are already successful simulations of LS3 getting up from the back by
swinging the legs and building momentum. Furthermore, the LS3 will improve the BigDog at
redundancy by additional backup systems. [Rai10].

SandFlea

The SandFlea was created by a cooperation between Boston Dynamics and Sandia National
Labs in 2009 [IEE12]. The UGV was originally called the Precision Urban Hopper, but was
renamed by the DARPA and the Rapid Equipment Force (REF).

Fig. 7: the Boston Dynamic SandFlea
[Qwr14]

The SandFlea originates from a class of Insecta, caused
by its CO2 powered piston in the back [IEE09] which
enables the eleven pounds robot to jump adjustable
heights between one and nine meters. Therefore, it is
more useful than previously used small airborne sys-
tems which are more expensive and less reliable. The
four unusual shaped wheels act as shock absorbers for
hard landings. It is furthermore used on squad level
as an optical system that finds its ways behind en-
emy lines during operation and has been already in
combats in Afghanistan.
The SandFlea, like shown in Fig.7, is 33𝑐𝑚 long,
about 46𝑐𝑚 wide and has a height of 15𝑐𝑚. The endurance of its batteries enables the
robot to run up to two hours and do 25 jumps per charge. It is furthermore built to tolerate
humidity, salt, oil and extreme sand environments.
The resolution of the video camera is 320x240 pixels and has a maximal still image resolution
of 1280x960 pixels.
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RHex

Fig. 8: the Boston Dynamic RHex [Qwr14]

The Boston Dynamics RHex [Dyn12] is a realized
hexapod design following the innovations done by mul-
tiple universities funded by the DARPA.
Numerous papers came to the conclusion that the
hexapedal approach has a better locomotion than
wheel or track-based systems [D.E01] but leaving the
potential of legged robots behind. The difficult ter-
rain robot consists of a rigid body with six compliant
legs with one independently actuated Degrees of Free-
dom (DOF) per leg.
The data sheet of the Boston Dynamics RHex [Dyn13]
discloses some additional details of the 12.5𝑘𝑔 robot like its special LiIon batteries mark
BB2590 which allows run times of up to six hours at two mph on natural terrain while being
able to climb up slopes up to 60 percent in slope walk or even higher in up to 84 percent
climb mode. Another point to mention is the IP radio which has the very high range between
400 and 700𝑚. Moreover the RHex, as illustrated in Fig.8, is IP67 sealed and consequently
water submersible.

1.1.3 Willow Garage

Scott Hassan, the founder of Willow Garage, was a doctoral computer science student at the
Stanford University in 1996, where he has met both Larry Page and Sergey Brin, the later
founders of Google. Hassan helped them developing the google source code what Larry Page
thanked him later by giving him a big amount of Google shares. After additionally selling his
own company eGroups - an email group managing software - to Yahoo for 412 million USD
Hassan’s wealth today can be estimated around one billion US dollar [Ols08].
In late 2006 the open source and free software enthusiast Hassan created the robotics think
tank called Willow Garage in Menlo Park, California - outside of Silicon Valley, as the newly
founded company had no ambition to make money.
The company probably got most famous for the creation of the Robot Operating System (ROS),
an open source solution for a lot of robotic problems, which we explain more detailed in section
2.2.4 Robot Operating System (ROS).
Willow Garage supported multiple spin-off-companies. Most important the autonomous robot
producer Robotnik [Rob14e] and Industrial Perception Inc. (IPI), which builds guiding robots
for automated material handling at commercial distribution centers [IPI14].
Beginning with February 11th 2013 Willow Garage changed to a self-sustaining company
[WG14g] which led to the majority of Willow Garage Inc. employees moving into Hassan’s
newly founded company called Suitable Technologies [Tec14] that today sells the telepresence
robot Beam.
Since January 17th 2014 the longstanding Canadian partner company Clearpath Robotics
[Cle] took over the support and service responsibilities for the leading mobile manipulation
platform Willow Garage PR2 [WG14h].
In the following, we introduce some of their mobile robots.

TurtleBot

The TurtleBot is a series of robots created by Tully Foote and Melonee Wise forWillow Garage
[Ack13] around 2010. Shortly after iRobot released their first domestic robots they moved away
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from their first attempts of creating a low-cost ROS robot with the Lego NXT [Min14] (which
was too weak on computational power and expandability) over iRobot Roomba to finally the
iRobot Create. The main advantages of these are that they make use of the recently released
Microsoft Kinect and generate a better odometry by adding gyroscope. Furthermore, they
created an open hardware case that is suitable for most indoor applications. After leaving the
development stage the TurtleBot, which has been named after the Xerox Parc Turtle Graphics
by Seymour Papert [SP76], has become a very valuable platform for education and research.
Tully Foote now works for the OSRF [OSR14], the current holder of the trademark TurtleBot.
Melonee Wise left Willow Garage and founded her own company called Unbounded Robotics
[Rob14b] which focuses on creating low cost robots for research and education and up to now
created the robot UBR-1 [Rob14c].

Fig. 9: the Willow Garage
TurtleBot 1 [WG14f]

TurtleBot 1 Mobile computer systems beside laptops have not
been very popular yet and therefore are not as cheap as average
laptops, so the inventors decided against a screenless robot and
used an ASUS 1215N (Intel Atom D525 Dual Core Processor
with 2GB RAM [WG14c]) laptop as main processing unit.
Its mobile base, an iRobot Create, allows an additional load
capacity of 5𝑘𝑔 to the 5𝑘𝑔 of the robot itself with a speed of
about 0.65𝑚/𝑠 (2.34𝑘𝑚/ℎ). The 3000 mAh NiMH battery pack
which is located inside the mobile base lasts around 1.5 hours.
Whereas the Microsoft Kinect requires an additional 12𝑉 1.5𝐴
power supply which can be activated by software.
It is possible to build your own TurtleBot 1 like it can be seen
in Fig.9 by instructions given on Willow Garage’s website, in-
cluding all required parts of the case as printable three dimen-
sional (3D) models [WG14a]. Currently, the TurtleBot 1 costs
between 1000 and 1200 EUR at local distributors.

Fig. 10: the Willow Garage
TurtleBot 2 [WG14d]

TurtleBot 2 After the release of TurtleBot 1 the feedback
of the robotic community was enormous. As Tully Foote
described, Daniel Stonier from Yujin Robotics simply wrote
an email suggesting a cooperation between Yujin and Willow
Garage. They exchanged a wish list of what an ideal mobile
robot base should be capable of and this led to the development
of the iClebo Kobuki base. It has many advantages over its pre-
decessor: improved odometry measurement precision, the usage
of an open protocol and greater autonomy by better charging
stage handling. Furthermore it provides a greater general load
and higher speed and brings better mobility by a larger diameter
of its wheels. This enhanced the capacity to overcome obstacles
up to 12𝑚𝑚 and is the reason why it is able to turn slightly
faster with 180𝑑𝑒𝑔/𝑠.
Therefore, the TurtleBot 2, like he is illustrated in Fig.10,
gained 10𝑐𝑚 of height and 1.3𝑘𝑔 of weight while keeping the
maximum additional load at 5𝑘𝑔.
The battery and power system varies between a standard 14.8𝑉 2200𝑚𝐴ℎ Li-Ion (3ℎ) and
an extended 4400𝑚𝐴ℎ Li-Ion (7ℎ) battery.
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TurtleBot 3 The TurtleBot 3 3 has not yet been created. As both inventors do not work for
Willow Garage anymore, the concept might change significantly. But when they were asked
for speculations both agreed on the implementation of a 360-degree Laser, more powerful
batteries and even better obstacle traversal. This might influence later decisions according to
our own robot.

Husky

With 1000 sold units until 2014, the Husky is the flagship UGV of ClearPath Robotics. In
2009, the company was founded by four graduated students from the University of Waterloo’s
mechatronics engineering program. The company is very closely connected to Willow Garage
and therefore the Husky is a very good example for UGVs running their ROS. Since then the
company grew to more than 50 employees selling nine different robot models.

Fig. 11: the Clearpath Robotics Husky
[Ack12]

The 99𝑐𝑚 long, 67𝑐𝑚 wide and 39𝑐𝑚 high compara-
tively big mobile base has a weight of 50𝑘𝑔 and can
carry additional payload of 75𝑘𝑔 at a maximum speed
of 3.6𝑘𝑚 per hour. It carries a battery with a 20𝐴ℎ
capacity that allows a total run time of up to three
hours. Furthermore ClearPath Robotics later released
a bigger version called the Grizzly.
Its properties make the Husky an ideal platform for a
wide variety of tasks which reach from mining appli-
cations up to the Canadian Space Agency or NASA’s
HI-SEAS - a long term program for Mars missions.
Its current price is about 70 000 USD in an equipped
version.

PR2

Fig. 12: the Willow
Garage PR2 [Raz11]

The Robotic Research platform PR2 [WG14e] is the state of the art
product ofWillow Garage. The 50 world wide existing PR2s, as shown
in Fig.12, are created to break the wheel reinvention in robotics and
try to enable researchers to easily reproduce code in papers.
Therefore it combines an omnidirectional base with two five DOF arms
and multiple sensors, including laser scanners, cameras, inertial mea-
surement units and many more [WG14b]. On the software side it is
run by Robot Operating System (ROS).
Different versions of the very modular PR2 are currently used by 34 in-
stitutions in 12 countries that form a very active community [PR214a].
The prices of a base PR2 for educational institutions start at
280,000.00 USD excluding taxes and shipping [PR214b].

1.1.4 University projects

Another essential branch of robotic development are university
projects. They provide fundamental research and are the root of every
commercial robot company.
Unfortunately there are more projects existing than a single thesis can cover. In the following,
we therefore introduce two projects that are somehow connected to this work. We are starting
with the Carnegie Mellon University, the place where Dr. Raibert started with the Leg Lab
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and one of the rare places of robots that are explicitly developed in relation to mining. The
second one is the Technical University Darmstadt which has been the first German winner of
the Rescue Robot League in 2014 [Rob14a].

Carnegie Mellon University - Groundhog

The Carnegie Mellon University - Groundhog is a four-wheeled UGV built in 2004. First
experiments already took place in 2002 [CMU02] and relied on cable communication.
It has been developed to explore and map subterranean spaces like found in abandoned coal
mines. It performed nine autonomous missions documented by students of the Robotics
Institute’s Mobile Robot Development class of Carnegie Mellon University. Under the lead of
Scott Thayer and the Fredkin University professor William L. "Red" Whittaker the robot has
been developed as a response to an incident at the Quecreek Mine, where nine miners nearly
died after an accidentally breached wall, which caused the flooding of the mine. One of the
main issues back then was missing map data.

Fig. 13: the Carnegie Mellon Groundhog
[CMU05]

Fig. 14: Carnegie Mellon CaveCrawler
Source: Carnegie Mellon University
[CMU14]

The Carnegie Mellon University - Groundhog, like illustrated while one of its first under-
ground experiments in Fig.13, is capable of traveling at 1.6𝑘𝑚 per hour and is equipped with
an array of cameras as well as gas, tilt and sinkage sensors. Furthermore, a laser scanner and
a gyroscope enables this early UGV to use Simultaneous Localization and Mapping (SLAM)
algorithms.
"The Groundhog is only the beginning. We see future generations of machines that will swim,
crawl and climb through mines to enhance safety, support rescue and ultimately enable robotic
operations beyond mining in caves, bunkers, aqueducts and sewers." Whittaker [fCMUC14]

TU Darmstadt - Team Hector

The Heterogeneous Cooperating Team of Robots (Hector) results from a PhD program of Co-
operative, Adaptive and Responsive Monitoring in Mixed Mode Environments of the Technical
University Darmstadt [Dar14]. The main task of Hector is the development of navigation and
coordination algorithms for multiple autonomous vehicles like shown in Fig.15. They share
the created software under open source licenses [GRK14]. Hector has been very successful
at Robotic Conventions and Tournaments like the RoboCup Rescue [Res14] by using funds
of the Deutsche Forschungsgemeinschaft [DFG14] (DFG) to use expensive technologies like
Laser scanners or Lidars.
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Fig. 15: the TU Darmstadt Team Hector Rescue Robots [Dar12]

1.2 Problem description

It has already been shown that there are many different devices available - all starting at a
price range above educational or leisure activities. Therefore, one of the key aspects of this
thesis that needs to be evaluated will be the costs of robotic ground vehicles. Hence, we need
to define a good robot, explore its hard- and software requirements while keeping the costs as
low as possible and sustaining most important features.

This thesis follows a low cost approach for building an advanced UGV by examining existing
solutions, current hard- and software and by creating a basic modular design. We will fur-
thermore reproducibly implement the results with inexpensive components and evaluate the
created robot platform called a Mobile Sensor Robot (aMoSeRo).

1.3 Structure

First, we examine the general software requirements of mobile robots and compare self-written
solutions with robotic frameworks. After that we need to have a closer look at the advanced
hardware demands and define functional modular components an UGV consists of. Finally,
we will implement a low cost UGV.
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2 Software

In this chapter we investigate different software solutions for UGVs. Defining the general
requirements and relating them to our special robotic case is one of the first issues to solve.
Next, we estimate the workload for implementation and development of a self-made UGV
operating system and compare it to using different already existing robotic frameworks. The
main metrics we are going to use are the efforts and expenses of necessary implementation
time. Finally, we conclude our perceptions into a concrete decision for our low cost UGV.

2.1 Requirements

Beside usual software quality characteristics like efficiency and readability, robotic software
has further requirements. Those e.g. are individuality of robot dependent code, distributed
concurrent computations and complex software environments.

2.1.1 Software Reuse

Creating a mobile robot system from scratch includes a lot of programming effort. Besides
choosing an efficiently performing programming language and developing a suitable environ-
ment, most of the created code usually tends to become robot dependent. Numerous robots
have already been built in that way. Especially university robot prototypes, which are often
only built a single time, come with a critical disadvantage: reduced reproducibility. To verify
or reproduce research results, scientists practically need physical access to the created robot,
as often there is no adequate simulation environment available and the robot construction
and code is not publicly available. Therefore, external scientists frequently build their own
robots and by that enter the circle of wheel reinvention [WG10].
An approach to solve this issue is the Willow Garage PR2 which can be understood as a
well defined robotic platform. By abstracting common tasks into reusable components with
well defined interfaces and parameters, most solutions become independent of the current
robot and can be reused in other projects. That remarkably reduces development time, cost
and furthermore improves software quality. Research results created on a single PR2 can be
verified on every other PR2 by simply installing corresponding components and running the
created code. Because of hardware abstraction the same code can even be run on other robots
that follow the same open principles.
Moreover, a solid platform allows the creation of reusable visualization, simulation and testing
software for multiple robots and therefore allows heterogeneous robot setups. A fact most
single purpose applications can not achieve as they tend to omit surrounding components.
Like for most cases, using existing software to the highest possible amount should be preferred
for our project as it delivers more functionality and saves programming expenses. Never-
theless, hardware dependent code needs to be created and subsequently robot independent
interfaces are inevitable.
In conclusion, the optimal software of a robot should abstract tasks into reusable components
with well defined interfaces and parameters. By that, solutions become independent of the
current robot and can be reused in later projects, significantly reducing long term development
time.

P. Petring: aMoSeRo - a Mobile Sensor Robot



2 Software 16

2.1.2 Distributed computation

Since most mobile robots are not single computational systems, they are usually running on
distributed hardware like integrated circuits, micro controllers and multiple processing units.
Therefore, well defined interfaces between these parts are essential in order to replace single
components or communicate across different programming languages and devices.
Furthermore, only fully autonomous robots do not ultimately require a network component or
any other communication interface. In most cases UGVs are only the executive part of a more
powerful computational system. Typically, at least one strong server provides CPU-intensive
services like mapping, localization or planning as these computations require corresponding
hardware specifications and a lot of power, which currently can’t be provided by mobile
devices.
Additionally, most robots do not include any sort of visual output device. Moving visualization
data to a Graphical User Interface (GUI) via network communication may be an additional
requirement.
In summary, all interfaces in an optimal software should be able to communicate over different
bus systems like serial, Universal Asynchronous Receiver/Transmitter (UART), Universal
Serial Bus (USB) or network. Additionally, well defined interfaces often reveal recording
functionality and by that improve simulation and optimization.
Implementing a distributed computational network with concurrent running tasks requires
advanced knowledge of all platforms that the software shall be running on. Moreover it
is a task most robots require. Like it has been explained this can efficiently be solved by
abstracting it to a robot independent solution. Therefore, most Robot Application Frameworks
follow that principle in different ways. Some of the most important ones will be presented in
the next section.

2.1.3 Robotic Software Environments

Next to the software running on an UGV, a lot of other applications are required. We now
examine the three most important parts that are not easy to differentiate as they tend to
merge into each other.

Visualization

Visualization is required for practical advanced human interaction and situation analysis.
Hence, envisioning the robot according to its environment using cameras, maps and 3D point
cloud data is an important task. Furthermore it is used as an intermediate step for higher
programming concepts and non-hardware-aware software applications like behavior or human
interaction. Interpretations of this abstraction are visual programming languages.
Another essential aspect is the visualization of the robots internal status. In more detail,
displaying hardware statistics, interface data flows, transformation status publishing rates and
capability graphs is important during development and for the decision making process of a
robot and require further programming. Subsequently, visualization increases time efficiency
during incorrect situations like appearing hardware errors or semantic issues.

Simulation

Usually, robot platforms are expensive and physical - which is why there are often multiple
programmers working on a single robot. In consequence, not all of the programmers can
test their software at the same time. To solve this, most developers make use of simulation
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environments as it significantly speeds up development and by that is helping to produce
more stable software. A prerequisite to that is a simulation environment capable of emulating
the real world and its corresponding physics. Consequently, simulation is especially helpful
while programming collision avoidance and balancing experiments as well as it allows the
preparation, structurization and investigation of recorded data.

Testing

Testable code improves software creation by every measure. The most common case is the
question if code extensions or bug fixes influence other parts of the software. With automated
tests this question can be answered faster and more correct than manually by a programmer.
But possibilities of testing go beyond this feature, for example Continuous Integration (CI) and
Test Driven Development (TDD) are advanced development concepts that support multiple
programmers and aid to create stable and working code under the premise of correct usage.
Furthermore, the demand of being testable often positively influences code structure and,
especially at large code bases, enables a higher degree of manageability. Because of that,
most complex software uses automated testing in some way to guarantee functionality and
extends its test portfolio with every fixed error.
On the other hand, testing can be time consuming and error-prone. Especially in small
projects automated tests significantly slow down development progress when overused.
At the beginning, tests of our own software are optional, but should be able to be implemented
afterwards - this is not the generally recommended way, but a pragmatic concession to the
limited time.

2.1.4 Licenses

In case of using existing Robotic Software Environments written by other programmers, we
need to mention different licenses.
There are three main types of licenses that need to be differentiated: first proprietary software,
which does not make its source code openly accessible and often is connected to fees when
being used. These closed source systems are mostly created by companies which sell a product
and by that often produce less secure software than others by following the concept of security
through obscurity. Because of that all additional features, maintenance and bugfixes need to
be achieved by their internal programmers who need to be paid.
Next, open source software. Coming under different licenses, like the Open Software License
[Ini14] (OSL) or multiple versions of the GNU General Public License (GPL), this software
publishes each piece of source code available for everyone. By that, everyone who is capable
of programming theoretically can review and improve the software in matters of security and
functionality. It further has been shown that the code written by multiple programmers in
open source projects is remarkably better and maintainable [Cov14]. Another essential point
to mention is that open source licenses often come with some restrictions in code usage, like
requiring the copy left principle or prohibition of military use. That aside, most of them allow
free of charge commercial use.
A more specified subset of open source software is the so called free software, which truly
frees the software from any restrictions of usage. The most popular examples for free software
licenses are Berkeley Software Distribution (BSD) and the MIT License.

P. Petring: aMoSeRo - a Mobile Sensor Robot



2 Software 18

2.2 Robot Application Frameworks

A robot framework is a reusable set of libraries or classes for a robotic system. As already
discussed, such frameworks enable developers to avoid a lot of unnecessary basic work. Un-
fortunately, frameworks tend to have a high level of complexity and consequently have steep
learning curves until they reveal their full benefits.
Some of the most important and widely used frameworks are introduced in the following
sections.

2.2.1 Microsoft Robotics Developer Studio (MRDS)

The MRDS is a windows based proprietary environment to control and simulate various
robots. To allow high level programming languages like C# to be used in a robotic context,
the MRDS among other things extends the .NET-Framework by adding a managed code
library called Concurrency and Coordination Runtime (CCR), which manages inter-process
messages and asynchronous operations [Mic12a]. Furthermore,Microsoft developed a software
principle on top, named Decentralized Software Service (DSS), which provides a state-oriented
service model that implements Representational State Transfer (REST) on system-level. This
can be used for building high-performance scalable applications which run on a single node
or across a network [Mic12b].
The MRDS offers some very useful features. First, development of web-based and windows-
based GUIs become significantly facilitated. At the same time, programming has been sim-
plified by the Microsoft Visual Programming Language (VPL), which allows easy access to
a robots actuators and sensors, principally via drag and drop. Next, the MRDS makes it
possible to add other services or libraries, like they are provided by Open Source Computer
Vision (OpenCV) or of their own products like the Microsoft Kinect. Another point is 3D
hardware acceleration during simulations. This can be remarkably faster than on open source
operating systems. Finally, it supports a lot of common robots by design, like the iRobot
Roomba, iRobot Create, different Lego Mindstorms robots and even Segways. As a result, the
MRDS benefits from a relatively low learning curve.
However, the framework has not been very active over the last three years.

2.2.2 Cyberbotics - Webbots

Another powerful proprietary robot development environment that needs to be mentioned is
Webbots which has been created by the spin-off company from the Swiss Federal Institut named
Laboratoire de Micro-Informatique (LAMI) in 1998. After over 17 years of existence, today, it
is capable of designing complex robotic setups in shared three-dimensional environments with
one up to multiple robots of the same kind or even several different robots. The properties of
each device like shape, color, mass and friction can be chosen by the user and even can have
different locomotion schemes like wheeled robots, legged robots, or flying robots. A condition
for using the Webbots Integrated Development Environment (IDE) is basic knowledge of C,
C++, Java, Python or Matlab programming. However, the project is well documented and
offers multiple libraries and APIs.
Because of its high focus on simulating robots in physically realistic worlds it depends on real
units and as a consequence increases development speed and quality. Based on the Model
Program Simulate Transfer approach [Mic04], the simulated robots later can be transferred
on real, mostly commercial, devices. Not surprisingly, Webbots is very suitable for education
[GLHF11] and therefore has already been used in over one thousand universities and research
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centers worldwide [CYB14a].
Webbots runs on Windows, Linux and Mac OS X and comes in different versions and propri-
etary licenses (Tab.1). Some features like robot programming or the fast simulation mode are
essential for productive robot development. Other features like the so called supervisor mode,
where a single robot can control other robots or the simulation environment, are optional.

Webots feature FREE NAO EDU PRO
Price in CHF 0 n.a. 320 3500

Supervisor capability no no no yes
Physics plug-in programming no no no yes

Fast simulation mode no no no yes
Robot programming no limited yes yes

Transfer to real robots no limited yes yes
One year Premier Service included no yes yes yes
Robot and environment modeling yes no yes yes

Multi-platform: Windows, Mac & Linux yes yes yes yes
Floating & dongle licenses N/A yes yes yes

Tab. 1: the Cyberbotics - Webbots versions and features overview [Cyb14b]

2.2.3 Player Project

The Player/Stage Project has been founded by Brian Gerkey, Richard Vaughan and Andrew
Howard in 2000 at the University of Southern California at Los Angeles [Pla12]. It is a follow
up of Arena and ArenaServer they had written before. The name originates from a famous
William Shakespeare cite "All the world’s a stage; and all the men and women merely players"
from his play As You Like It [Sha04].
In this regard, the robots are the players, and the world coordinate system in simulation and
the world is the stage. The Stage Simulator has been a 2D multiple robots simulation built
on top of FLTK, a cross-platform C++ GUI toolkit. Subsequently the Stage Simulator has
been able to simulate hundreds of robots at the same time in a basic simulation environment.
Later, the Stage Simulator got extended and replaced by another project, called Gazebo,
which, among other things, supports three dimensions and furthermore provides distributed
calculation capabilities. Henceforth, the environment is called Player Project.
The players in the project are the robots that need to implement a Player Robot Abstraction
Layer. This layer can be applied to both, simulated robots and real devices. It provides
support for various programming languages like C, C++, Python and Ruby and its socket
interface is as unprescriptive as possible. Player which runs on POSIX compatible Systems
like Linux, MacOS, Solaris, BSD and Windows and proclaims itself as one of the most used
open source robot interfaces in research and education [CTHJMB05].
The Player Project is licensed under GPL and - like we introduced in Licenses - therefore is
open source copy left required software.

2.2.4 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source meta-operating system which pro-
vides essential features, namely hardware abstraction, low-level device control, implementa-
tion of environmental functionality, such as visualisation, simulation or testing and allows
message-passing between concurrent running processes [O’K13]. Furthermore, it offers imple-
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mentations of commonly used functionality in installable packages which even cover complex
algorithms like Simultaneous Localization and Mapping (SLAM) and Visual Object Recogni-
tion (VOR). ROS moreover contains tools and libraries for obtaining, building, writing and
running code across multiple heterogeneous computers [ROS14] and therefore includes lan-
guage and platform independent tools [Ng10]. For example, ROS supports multiple client
libraries, namely roscpp for C++, rospy for Python, roslisp for Lisp and many others. It is
also possible to link application-related code and external libraries like OpenCV for computer
vision or Eigen3 for efficient linear algebra computation. Furthermore, ROS can successfully
be wrapped around other frameworks like the Player Project.
ROS is mostly licensed free and has been developed as open source software under BSD
Licence. Like discussed in Licenses on page 17 this offers a variety of advantages for a low
cost robot.
Unsurprisingly, with the high complexity of ROS there comes one of the highest learning
curves of all robotic frameworks. Besides, due to rapid changes of main characteristics during
different major versions, nearly all books and most tutorials on the internet became unreliable
which is often very confusing for a beginner. But, after the top of the curve, a lot of things
are self explanatory and complex features can be implemented very fast.
Unfortunately, another point to mention and one of the main disadvantages of ROS is the
dependency on the ROS host and its Operating System (OS). In case you do not develop
on a x86 32bit system a lot of automations do not work and require patience to be solved.
Especially, the support of packages on armhf, the ARM release repository, is not very usable,
yet. Additionally, despite the importance of reactivity and low latency ROS is - like all other
frameworks - no realtime OS.

ROS Terminology

ROS is a message-based concurrent running heterogeneous peer-to-peer network application.
Its structure can be imagined as a mostly undirected graph with an obligatory center process
node, called roscore. Broadly speaking, this one master node tracks every other part of
the robotic network, including running processes and their interfaces. The centralistic design
consequently uses its advantages by offering global debugging possibilities and error logging.
It further mediates direct connections between every graph node on request. This becomes
very useful in cases like image processing, where running traffic over the central node would
impact the global system by increasing network usage and processing power.
Still simplifying, other parts of the graph are organized name spaces, called rosnodes, which
in turn are containing more rosnodes or process edges called dependently on their function
as rostopics or rosservices. A rosnode in a ROS environment therefore can be a robot, a
processing server for navigation or even a human interaction device, like a laptop. Usually they
physically do not cross the border of a single computing system, but often a single system can
run multiple name spaces. Also, rosnodes profit from zero copy shared memory handling
between their topics by using the ROS nodelet manager and by that significantly reduce
memory consumption. Every rosnode offers at least one rostopic, a multi-peer subscribable
message provider, or a rosservice, a bidirectional unique connection between peers containing
parameters.

ROS Package structure

The meta-operating system character of ROS offers a wide collection of development related
tools. One of the most important is the package management feature. Similar to other OSs
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it encapsulates functionality into easily installable units. There are two stages of packaging.
The first one is using the current OS packaging system like most linux derivates usually have.
After adding the ROS repository to the sources.list, common packages like the ROS visualizer
rviz become available, which are platform dependent and often contain precompiled parts.
This is the reason why it can be comfortable but confusing and often does not lead to the
most recent versions of the packages. This is important when switching ROS major versions
(e.g. from ROS Hydro to ROS Indigo), like it happened during this thesis.
On the other hand, we can make use of the current package development repository to access
the most up to date version. Therefore, every package comes with its multi-programming-
language source and has to be compiled on, or at least cross compiled for, the platform it
later runs on. ROS also has tools to handle inter-package dependencies (rosdep), updating
heterogeneous code-managing repositories (wstool) and a higher level building tool (catkin).
In order to work with those tools correctly, every package consists of at least two files. The
package.xml file contains detailed information about the ROS package, like author, origin,
license or meta-dependencies. Next, CMakeLists.txt declares inter process messages, services,
actions and further addsmake-dependent information like linking sources, install and testing
routines.
Another equally important file type that needs to be mentioned are launch files. Written in
eXtensible Markup Language (XML) they usually contain well defined node setups and allow
more comfortable parameter handling than starting all nodes and topics each by a single
command. Consequently, they should be preferred to launch functionality.

ROS Transformations (TFs)

One of the most important packages a ROS robot should implement is TF, because it enables
the robot to keep track of multiple coordinate systems (frames) and their relations between
each other over time. Following the ROS Enhancement Proposals (REPs) especially REP105
the most global frame should be the world frame. Every other frame derives from it in a tree
structure and can be transformed back into world coordinates by using the same units of
measurement defined in REP103.
Another important frame tree is the robot itself. Starting with a mobile base_link further
attached elements called links like wheels or cameras have their own frame and are connected
via relations, also called joints. Those joints can be static or dynamic. A sample configuration
can be seen in Fig.16 and Fig.17.
To define a robot, ROS offers a special XML description file using the Unified Robot De-
scription Format (URDF) which is further improved by special markups and an additional
interpreter called XML Macros (XACRO). In ROS, all not time-related relations can be
defined in a single file and can be published periodically by the robot_state_publisher
for example for simulation purposes. In advanced setups, publishing the robots joint states
and especially the relation of the base_link is a complex task. Therefore it gets divided into
separate processes like navigation, mapping or the hardware controllers.
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Fig. 16: ROS a simple robot TF tree, illustrating a mobile base with four
wheels and a Asus Xtion Pro depth sensor

Fig. 17: ROS rviz visualization
of the example TF tree

ROS History

In 2007, the first robot running a version of ROS was STanford Artificial Intelligence Robot
(STAIR) which was developed by Stanford Artificial Intelligence Laboratory (SAIL). During
that time ROS was called switchyard [Ng07] but already followed its main principles like inter-
process communication, concurrency and heterogeneous environments. After that, Willow
Garage primarily developed ROS until February 2013. At this time ROS reached the critical-
mass, every open source project needs to survive without being mainly driven by external
funding. Since then the stewardship of ROS has been moved to the OSRF [OSR13] and
subsequently left Willow Garage.
Major versions of ROS are called distributions and are named using adjectives that start
with with successive letters of the alphabet. Starting with box turtle, C Turtle, diamondback,
electric, fuerte, groovy, hydro and finally Indigo, which is available since May 2014.

2.2.5 Conclusion and consequences

The high demands of good robotic software environments and the complexity of base algo-
rithms are outstripping the possibilities of a single programmer. Moreover wheel reinvention
cuts the possibilities of efficient extensibility and prevents reconciliation or maintainability.
Furthermore, most robots are facing abstractable issues like navigation, collision detection or
efficient sensor data computation which is why code re-usage should be a prime directive.
Hence, this chapter briefly introduced the most important Robot Application Frameworks and
Robotic Software Environments.
Unfortunately most proprietary and therefore cost intensive frameworks like the MRDS and
Cyberbotics - Webbots are less suitable for a low cost robot. That aside their lack of extensi-
bility and community activity are critical when facing programming issues and errors.
In our special case of creating a low cost robotic platform, we decide us to use an open source
project with enough activity to persist the future: ROS.
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3 Hardware

This chapter focuses on hardware related challenges surrounding robotic platforms.
First, we have a look at the general requirements and define low cost, conditions of software
and physical requirements. Next, we introduce a modular design concept by differentiating
between Sensors, Accumulators, Processors and Actuators. Finally, we discuss several options
for each of their components, before specifying a complete implementation of an UGV in the
next chapter.

3.1 Requirements

The hardware properties of a robot are defined by requirements like mechanical load or envi-
ronmental factors and external parameters, namely money, availability of parts and ongoing
technical progress.

3.1.1 Low cost

As already mentioned, UGVs like they are found in industry, education or Do it yourself (DIY)
communities are currently not affordable for average technique enthusiasts, teachers in schools
or sometimes even universities. The concept of low cost robots tries to solve that issue.

What is low cost in a robotic context?
The traditional interpretation of low cost is minimizing the expenses while keeping most
important features. In borders of mostly expensive robotics this term needs to follow the
same differentiation as between cheap, which means coming with a significantly reduced price
and quality, and keen, considered as maintaining a certain amount of quality at a reduced
total cost. For example, the 50 000 USD [WSJ14] UBR1 [Rob14c] is a low cost version 250
000 USD up to 400 000 USD PR2 [WG14e] of Willow Garage, but still is far away from the
term cheap. Another example and at the same time another robot Melonee Wise worked on
is the TurtleBot, which was constructed with the attempt to be the lowest cost version of a
ROS robot at time of creation.

How to achieve low cost?
There is no general solution to this problem. But an approach to solve the issue in the
robotic context is to replace expensive single purpose solutions produced by companies in low
quantities with mass produced products that get customized to suit the application.
A demonstration of this positive misuse are the first versions of the TurtleBot. Instead of
constructing the robot with expensive 3D Laser Scanners they replaced it by a Microsoft
Kinect originating from the gaming industry. Furthermore, it used a iRobot Roomba and later
a iRobot Create as a low cost mobile base as constructing a custom moveable footprint would
have been way more expensive. Also, the mass produced product came at a lower cost and
unharmed warranty. An important side-effect of these replaceable parts is the independence of
unique cost intensive and sometimes, due to customs regulations, not easily accessible parts.
By that, the power to choose a cheap replacement at any time reduces overall expenses and
total risk.
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As a consequence, our UGV should be easy to build and reproduce, affordable for education
and able to run ROS with some kind of 3D measuring device. It further should consist of
easily achievable or replaceable parts.
In conclusion, these properties lead to a modular design concept with communication inter-
faces between the inexpensive components. Also a certain degree of flexibility is required to
maintain extensibility and independence of expensive parts.

3.1.2 Software conditions

As we introduced in the Software chapter, applications in robotics need to solve a lot of com-
putational intensive tasks. While some of them can be outsourced to an externally powered
device like a laptop or a server, others essentially can be calculated on the UGV.
Examples for that are collecting sensor data, receiving and executing commands or stream-
ing data. Balancing these is a challenging task, because on concurrent executing systems all
processes can influence each other. Especially when computational power gets cut down to
the limits in order to save energy. As most libraries, frameworks or software environments
do, ROS requires additional resources when being compared to a single purpose application.
In conclusion providing enough computational power while using reasonable amounts of energy
is an important task to solve.

3.1.3 Physical properties

Physical dimensions and requirements result from a tradeoff between costs and size, whereas
smaller UGVs tend to be more expensive and complex. On the other hand, an upper bound
among others is set by being manageable in terms of transport and storage.
The target UGV for this thesis is a four wheel or two tracks driven ground robot with physical
dimensions below 150𝑚𝑚 * 300𝑚𝑚 * 300𝑚𝑚 (height, width, length). The drive power should
be accordingly with an effective force of more than 100𝑁𝑐𝑚 for moving or holding torque
in case of stronger slope. Additionally, tracks are the preferred primary propulsion system
as they have better grip properties and only require simple motor control. Another nice to
have would be the capability of spot-turning, which would allow operating on small areas
and facilitates 3D scans of rooms without moving further than required. Another optional
point if the robot is going to be used outside of buildings or around kids is a splash-proof
case that would increase the robots life. Furthermore, modular extensibility would increase
the usability of the robot significantly.
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3.2 Modular design

Like the graph in Fig. 18 shows, we divide the functionality of UGVs into four main modules:
First, Sensors are the parts the robot requires to sense the outside world, next Accumulators
serving and saving power, followed by Processors the units are processing information gathered
by Sensors and finally, Actuators which provide physical movement. These areas in turn get
separated into further sections which we discuss one by one on the next pages.

Unmanned Ground Vehicles (UGVs)

Sensors

Depth Position Inertia Control

Accumulators Processors

CPUs SBCs Micro

Actuators

Motors Motor drivers

Fig. 18: Functional modules of UGVs

3.2.1 Sensors

A sensor is a device which measures physical quantities and converts them into electronic
signals. A robot reads these differently shaped signals by using according kinds of communi-
cation interfaces. Often connections are established through serial sockets like USB, FireWire
(IEEE 1394 High Speed Serial Bus) or an rs232 port. Some more hardware-related systems
like SBCs support programmable General-Purpose Input/Outputs (GPIOs) or Inter-Integrated
Circuits (I2Cs) and therefore are able to emit, receive or measure current power or commu-
nicate to addressable integrated circuits.

Depth Sensors

Measuring the surrounding environment of a robot is an essential task for further applications.
There are various ways available with very different accuracies and prices. Now, we delve
into the most important of them, starting with the previously mentioned hardware-related
solutions.

Fig. 19: the HC-SR04 [Aim14]

Ultrasonic Range Scanner Equally to light, sound needs a
certain time to travel. It is possible to determine the distance by
sending out a sonic signal and listening to its reflected echo. The
time of travel is estimated by measuring the difference in time
between the pulse being initiated and the echo being reflected.
Ultrasonic sound by definition are oscillating sound waves over
the upper bound of the human hearing range. This limit varies
but usual starts over 20000𝐻𝑧 for young adults. A common
example in nature where these waves are used for navigation
are bats.
During this thesis, we experimented with a HC-SR04 as shown in Fig.19. The sensor, which
comes at a cost of 2𝐸𝑈𝑅 has four pins. One for applying operating voltage, another for
providing ground, a third one to trigger a measurement and a fourth one that gets activated,
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when an echo has been received. The outcome of various tests are a very low accuracy for
distances above one meter and a high error incidence in cases on inclined surfaces.
As a consequence, these depth sensors are only suitable for a short range obstacle detection
and because of their low price could be built in multiple times inside a simple UGV.

Double Webcam Approach Another way to estimate distances between a robot and its
surroundings is the approach most animals and humans are following: stereoscopic vision.
The utilization of two separate eyes and fusioning optical images into a three-dimensional
picture are successfully imitated by a robot by replacing organic eyes with two high resolution
web cameras. ROS already supports visual algorithms which, after non-optional calibration,
provide proper visual odometry.

Fig. 20: the Hokuyo’s
URG-04LX-UG01 [Ha14]

Based on findings by Martinez Fernandez [MF13] it can be ar-
gued whether the achieved results of these algorithms are accurate
enough, especially in comparison to other methods.

Laser-Scanner Laser is a special form of light. Lasers-Scanners use
the steering of laser beams to emit a special pulse to every point of
sight while measuring the time the beam needs to get reflected by the
surrounding area. This principle is called time of flight. It further-
more facilitates usage of the Doppler Effect to determine whether an
object currently moves forward or backward in relation to the scan-
ner. On the other hand, most laser-scanners or laser-rangefinders
can be jammed during normal operation - for example by smoke,
shiny, mirroring or transparent objects, which reduces their reliabil-
ity.
One of the inexpensive variants are laser-distance-measuring-devices which can be found at
home improvement stores to measure single indoor distances. If these are suitable for a low
cost robot has not been determined during this thesis, but estimating their effort to be used
effectively in ROS, they at least require a lot of knowledge or time to get set up. Other
devices with the ability to scan multiple dimensions in a short period of time are significantly
more expensive and are mostly used by the surveying industry. These scanners often contain
periodically moving mechanical mirrors which increase power consumption, error susceptibility
and weight [Dey08].
Eligible examples with acceptable expenses and general technical conditions for a low cost
robot are the devices manufactured by Hokuyo with prices ranging between 1140 and 5875
USD like shown in Tab.2.

Name
scanning
interval

de-
tectable
range

angu-
lar
reso-
lution

operat-
ing

voltage
weight

Price
USD

URG-04LX-UG01 100 msec
240∘

20mm to
5600mm

0.36∘ 5V 160g 1140.00

UXM-30LAH-EWA 50 msec
190∘ up
to 80m

0.125∘ 10-30V 800g 5875.00

Tab. 2: Hokuyo’s Laser-Scanner price range bounds
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Another option to save costs is disassembling vacuum cleaner robots, which start at prices
about 400𝑈𝑆𝐷 and use some cheaper versions of Laser-Scanners. Depending on model and
level of documentation, the risk of damaging the laser or the possibility of being used at all
can not be estimated at this point.

Light radar (Lidar) Light radar (Lidar) is a portmanteau of the words Laser and RAdio
Detection And Ranging (RADAR). Invented in the early 1960s, it first was used by the
National Oceanic and Atmospheric Administration (NOAA) to measure clouds [On14] and
later played an important role during the creation of maps of the moon by Apollo 15 in 1971.
It still is used in space docking maneuvers and extra-terrestrial landings.
On first sight, the physical properties are similar to Laser-Scanners, but instead of only
measuring time of the reflected light, Lidar further emits ultraviolet and infrared light waves
to analyze the thrown back wave lengths. Because of various forms of diffuse reflection caused
by scattering, Lidar can even reach resolutions at the molecular level.
In the context of mobile robots Lidar is often used as a more exact version of Laser-Scanner.
The prices of 3D systems are with 70000𝑈𝑆𝐷 comparably high. Consequently, only well
founded projects like the TU Darmstadt - Team Hector or the Google Car project can afford
Lidars.

Microsoft Kinect The Microsoft Microsoft Kinect is a horizontally designed sensor bar.
The main task of the device is turning the humans body into a gaming controller by motion
capturing the bodies of multiple players at once. As the work of Thomas Kühn [Kue11]
examined the internal design, we know that the Microsoft Kinect is uniting a multi-array
microphone with a RGB- and a special range-camera developed by PrimeSense. By using
on board algorithms, it provides 640x480 pixels of 211 possible depth values at up to five
meters of range. Comparing its price of currently 100𝐸𝑈𝑅 to other solutions, especially like
Laser-Scanner, the Microsoft Kinect is a considerable low cost solution for depth sensing.
At release, all software around the devices had been proprietary and for the Microsoft Xbox
only. Soon, this changed because of high interest of the open source community and by
Hector Martin [Ada10]. After the so called libfreenect, Microsoft released their Kinect .NET
Development Framework, which now enables all platforms to develop custom applications.
In comparison to the next device we are going to examine, the Microsoft Kinect sometimes
suffers from hardware issues when used in multi-device-environments [iPi13] e.g. two robots
looking at the same area at once will cause errors in data.

Fig. 21: Microsoft Kinect - with one infrared
emitter (red), a rgb camera (yellow) and depth
camera (blue) c○Microsoft

Fig. 22: Asus Xtion Live - with one infrared emit-
ter (red), a rgb camera (yellow) and depth camera
(blue) c○Asus

Asus Xtion Pro The Asus Xtion Pro is a PC-clone of the Microsoft Microsoft Kinect, de-
veloped by Asus. It uses the same core 3D sensing solution from PrimeSense. Unlike the
Microsoft Kinect, the Asus Xtion Pro was developed primarily for browsing multimedia con-
tent, accessing web sites and social networks. Besides the smaller physical size of the Asus
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Xtion Pro, it furthermore does not need an additional power supply. By that, the Asus Xtion
Pro does not to require more than the USB version two maximum current power, which is
500𝑚𝐴.
The library which accesses the Asus Xtion Pro’s data OpenNi2 was not available for ARM
at the point of writing. After some additions to the source code and custom compiling on
our own hardware, we managed the package to work with ROS and especially catkin both on
ARMv6 and ARMv7.
Furthermore, the Asus Xtion Pro is more compact than the Microsoft Kinect and weights
much less (0.5𝑙𝑏 against 3.0𝑙𝑏). On the other hand, because being less popular the smaller
community had issues e.g. with handling all changes by USB 3.0 drivers. Although, it provides
better RGB quality, but overall with 150𝐸𝑈𝑅 costs more than a Microsoft Kinect.

Leap Motion As partner of ASUS [Eng13] the Leap Motion uses the same emitted and
reflected infrared light for tracking parts of the human body like the Asus Xtion Pro. Available
since July 2013 [Tec13], the Leap Motion with about 90𝐸𝑈𝑅 is an inexpensive, but limited
input device, shown in Fig.23, which is optimized for tracking fingers and hands as illustrated
in Fig.24. The main features include the tracking of two simultaneous hands with gesture
recognition for all ten fingers. For distances between 10𝑐𝑚 and 1𝑚 at daylight the device
works reliably.
During this thesis, we have tested the existing ROS driver, which currently only supports one
hand and was not able to provide 3D PointCloud data. In brief, the Leap Motion unfortunately
is inappropriate for our project as their only use could be unreliable robot control by hand
gestures.

Fig. 23: LeapMotion device emits infrared light,
which can be seen with a non-filtered camera

Fig. 24: LeapMotion Visualization API allows track-
ing of two hands and advanced gesture recognition

Position

Particularly, Depth Sensors appear well-suited for positioning. Unfortunately, their accuracy
tends to be too imprecise. Consequently, most robots are using at least one additional source
and combine both, according to their relative quality among others by using linear quadratic
estimation filtering, originally introduced by Rudolf E. Kálmán [Kal60].
To improve the data generated by Depth Sensors, it is possible to measure the position of
wheels and how much they have turned by potentiometers. The so called hardware odometry
itself requires advanced knowledge of integrated circuits and subsequently would require a
lot of time to build. Obtained odometry data is one of the preferred sources among cheaper
mobile robots like the iRobot Create. With Stepper Motors, which we investigate in 3.2.4, the
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movement can be very well estimated by the steps they were initiated to run and probably
would not require additional sensors.
Another well-suited sensor to determine positions is the Global Positioning System (GPS). It
calculates the position by triangulating signals from satellites. These satellites have known
positions and emit timestamp-data. When these arrive at a local antenna they can be trian-
gulated according to their time of travel, and therefore at least allows an accuracy within a
two-dimensional coordinate-system when used outside of buildings.
Another sensor type we used during this thesis was a barometer, which measures barometric
pressure with high accuracy when used inside closed rooms. Nevertheless, a barometer highly
depends on constant barometric circumstances and should not be used outside of buildings,
where single air movement like winds can distort results significantly.

Inertia

However, every UGV experiences inertia. By definition, Inertia is the physical resistance
of an object to any change in state of motion. This includes changes to its speed and its
direction. The active physical force can be inexpensively measured in several dimensions
since the advancing smartphone-technology reduced the costs significantly.

Inertial Measurement Unit (IMU)
There are three main types of inertial position sensors between which a distinction needs to be
made. First, the accelerometer, which measures proper acceleration (without effects of grav-
ity) containing up to three axis called Degrees of Freedom (DOF). Next, the magnetometer
is a sensor to measure the direction of the earth’s magnetic field. With its help, it is possible
to determine the direction of the magnetic north pole of the earth even while being upside
down, a task where a usual compass would fail. On the one hand, their accuracy is very high,
which is why they also can be used as depth ferrous metal detectors. On the other hand, they
can be easily influenced by other fields, like the ones computers or humans do emit.
Finally, the gyroscope - a device to measure orientation based on angular momentum, which
especially can be used when magnetometers do not work, e.g. in space, or when they are not
exact enough.
An IMU combines these three types of physical force sensors and converts them into electronic
signals. Because of the high frequency and the advanced amount of data inter-part protocols
like I2C or Serial Peripheral Interface (SPI) or higher forms of communications are used.
We usually categorize IMUs by summing up their DOF. Because of our three dimensional
world and so far three different sensors the maximum number is nine. Sometimes producers
of IMUs add further position sensors like a Barometer or GPS and keep on adding those with
one DOF each.
We experimented with several IMUs which are illustrated in Tab.3 with an asterisk.
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Name
Total
DOF

Ac-
celome-
ter

Gyro
Magne-
tome-
ter

Com-
muni-
cation

ROS
driver

Price
EUR

WiiMote* 3 3 - -
Blue-
tooth

yes 42

WiiMote+* 6 3 3 -
Blue-
tooth

yes 60

LSM9DS0* 9 3 3 3
Arduino
I2C, SPI

no 18

9DRazor 9 3 3 3

onboard
AT-

mega328
serial

yes 100+

more advanced
solutions

9+ 3 3 3 Serial n.a. 120+

Tab. 3: Inertial Measurement Unit (IMU) Overview

Another essential point to mention ts the different operating voltages between the LSM9DS0
(3.3𝑉 ) and other comparable devices which are often run on 5𝑉 . Connecting a LSM9DS0
to a 5𝑉 circuit therefore requires a special bidirectional voltage level converter, which costs
about 2𝐸𝑈𝑅 when bought instead of being assembled by parts, but significantly increases the
complexity of the circuit. Equally important to be taken into account are different measure-
ment scales and accuracies while transferring data into a ROS /imu topic especially because
they need to suit the REPs suggested units of measurement.

Control

In case a robot needs to be controlled directly by a human, a hardware sensor or interface is
required to translate the human input into robot movement commands. Instead of developing
our their controller, many robots use game controllers like entertainment consoles use.
This fits into the low cost concept and comes with an intuitive or well-trained feeling for most
people. During that thesis we connected several console controllers to ROS as shown in Tab.4.
As most of the common controllers already have functional drivers for Linux and therefore
can be translated into ROS joystick or short /joy topics by code, most of the programming
effort was creating a reasonable controlling concept for moving a UGV.
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Name Axis
But-
tons

Connec-
tion

Feed-
back

Gyro-
scope

Price
EUR

Playstation 3 Controller 2+2 17 USB
Dual-
Shock

no 46

Xbox Controller 2+2 17
USB

wireless

Force-
Feed-
back

no 42

WiiMote 3 + 2 12 + 2 Bluetooth
Sound
Vibra-
tion

no 42

WiiMote + 3 + 2 12 + 2 Bluetooth
Sound
Vibra-
tion

yes 60

LeapMotion 3 0 USB none
com-
putable

90

Tab. 4: Teleoperation controller Overview

The basic principle behind all controllers is to generate valid geometry/Twist messages the
robot can execute. By that, every controller is using the same recordable interface while most
ROS algorithms still can be applied and react accordingly.

3.2.2 Accumulators

The ideal battery for our project is long lasting, light weight, fast rechargeable or at least
easily replaceable and should be as cheap as possible. Unfortunately the battery research
somehow still is the bottleneck of every mobile device and the fulfillment of the combination
above is currently far from possible. So we need to carefully face our demands with the fact
that with higher capacity usually comes higher weight - starting a vicious circle of higher
motor torque requirements, more power consumption and higher battery capacity again.
If we look at comparable mobile robots, the usual battery service life is slightly above a single
hour for the TurtleBot and below four to five hours for the iRobot PackBot. Some robots like
the PR2 further support to run while charging. We want to have battery lifetime at least
within similar range.
Therefore we considered using multiple battery technologies for both, our 12𝑉 (up to 2𝐴) and
5𝑉 (up to 1.5𝐴) circuits. Some specifications are illustrated in Tab.5. For us, a smart phone
charger pack with two different voltage exits is optimal.
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Name
Voltage
in V

Capacity
mA

esti-
mated
recharge
time

Price EUR

AAA 1.5 2000
10h

(200mA/h)
2

9V Block 9 800
4h

(200mA/h)
3

LiIon 3.4 2000 >3h 10
LiIon 5.8 2000 >3h 10

Battery Pack Smart
Phone Charger

5 and 12 15000 12h 45

Tab. 5: Battery technologies

Understanding battery behavior in robotic projects requires deeper knowledge of electronics.
Specifically, LiIon accumulators can be very dangerous as they heat up until burning or
exploding if handled wrongly. Series and parallel circuits of batteries should be encapsulated
as far as possible and reviewed by electronic experts. Moreover, power supplies for charging
should be used according to their manuals to avoid harm.

3.2.3 Processors

The heart of every robot is at least one central unit to process its data. Requirements for
processing differ according to the task the unit accomplishes. This especially is important
when talking about time critical controls as we examine in the next chapter, Actuators, where
Microcontrollers are essential.

Central Processing Units (CPUs)

For the CPU there is a variety of possible solutions available. Since the technological progress
has been advancing processors due to the demands of an increasingly mobile future, we care-
fully need to decide from which our mobile robot would benefit the most.
The range of available devices reaches from integrated circuits, programmable micro con-
trollers through single purpose computers, System on a Chips (SoCs) or Single Board Com-
puters (SBCs).
For us, the most distinguishable characteristic property for modern processors is the instruc-
tion set it is using. There are three main branches we need to have a closer look at:

x86 (32 bit) instruction set processors
x86 is a family of instruction sets used since the early days of 16 bit architectures. In 1985,
the i386 was the first processor that extended the length of the instructions from 16 to
32 bit. Since then, many manufactures implemented the same instructions on their units,
which is why the x86 family is still built into the majority of computers, besides the mobile
segment like smartphones or tablets. The lion’s share of existing software including drivers
and frameworks has been built on and for this type of architecture.
Hence, both ROS Hydro and ROS Indigo, currently are optimized for x86 (32 bit) machines.
On account of its wide spread, most packages, libraries and even drivers of the peripheral
devices are available for x86 (32 bit) computers.
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But as they are not produced for mobility from sketch, most x86 processors use more power
than other architectures we look at in the following sections. In addition to that they are
limited to a specific amount of address space which reduces their maximum RAM and often
sizes them down to single core CPUs restricting the multi-threading possibilities.
Unfortunately, also small and cheap SoC solutions with x86 (32 bit) are only available to a
limited extent. Furthermore, this influences the limited amount on existing SBCs.
In 2003, AMD introduced the first x86 (64 bit) CPU which fixed incompatibility issues with
the ongoing multi-core development.

x86 (64 bit) / x64 (64 bit) instruction set processors
With the doubling of the maximum instruction length, AMD first reacted to the demand of
multi-core architectures and bigger amounts of maximum memory used in a single machine
by creating the so called x64 (64 bit) instruction set. Other manufacturers like Intel soon
followed. Since then, the nearly equivalent x86 (64 bit) is the ideal choice for high performance
tasks while usually keeping backwards compatibility.
Unfortunately, mobility and therefore overall power consumption, especially when compared
to other instruction set devices, did not improve enough. That is why SoCs using 64 bit are
still relatively unusual. As a consequence, they are currently not qualified as a mobile robot
processing unit.

(32 bit/64 bit) instruction set processors
ARM instruction set processors are obstructed in smartphones and tablets which have been
getting down-market products in the last few years. They are an advancement of the reduced
instruction set computing (RISC), which in turn has been an improvement of the complex
instruction set computers (CISC). As a result, they use significantly fewer transistors for equal
commands. This reduces production costs, heat and power consumption and consequently
forms them into eminently suitable devices for battery driven projects.
The ARM architecture has been introduced in 1985. In October 2011, ARM announced 64
bit versions of their architecture. Today these can be found in many mobile devices, starting
with the Apple iPhone 5S.
They therefore are an appropriate choice for mobile robot processors.

Single Board Computers (SBCs)

Since connectors between components were a frequent problem for the reliability of a system,
the solution was hard wiring them together into a single integrated circuit [Ros99][pp.50-51].
Following this approach, the first SBC called MMD-1 was built by E&L Instruments in 1976.
SBCs mostly have been used as increased density integrated circuits and were applied as
backplane systems.
Starting with the One Laptop Per Child Program [one14] (OLPC), the development turned
SBC into cheap price devices, unleashing their educational value. We considered using several
SBCs illustrated in Tab.6.
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Raspber-
ryPi Model

B

Beagle-
Bone
Black

Cubi-
eTruck

Banana Pi UDOO
ODROID-

U3

SoC
Broadcom
BCM2835

AM3358/9
AllWinner
A20 SoC

AllWinner
A20 SoC

Freescale
i.MX 6

SAM-
SUNG

Exynos4412
Prime

CPU
700 MHz
ARM1176JZF-

Score

Cortex-A8
@ 1 GHz

ARM
Cortex-A7
@ 1 GHz

ARM
Cortex-A7
@ 1 GHz

ARM
Cortex-A9
CPU Du-
al/Quad
core @ 1
GHz

ARM
Cortex-A9
Quad Core
1,7 Ghz

GPU
Broadcom
VideoCore

IV

PowerVR
SGX530

Mali-
400MP2
GPU

Mali-
400MP2
GPU

Integrated Mali-400

Mem-
ory

512 MB 512 MB 2048 MB 1024 MB 1024MB 2048 MB

USB
Ports

2 1 +1mini 2+1mini 2 + 1mini 2 + 1mini 3

Net-
work

Ethernet Ethernet
Ethernet /
Wlan /

Bluetooth
Ethernet Ethernet Ethernet

Low-
level

periph-
erals

8 × GPIO,
UART, I2C
bus, SPI
bus with
two chip
selects, I2S
audio +3.3
V, +5 V,
ground

4xUART,
8x PWM,
LCD,
GPMC,

MMC1, 2x
SPI, 2x
I2C, A/D
Converter,
2x CAN
bus, 4
Timers

54
extended
pins

including
I2C, SPI

Extensible
26-pin
headers

76 fully
available
GPIO

Arduino-
compatible
R3 1.0
pinout

HDMI and
LVDS +

Touch (I2C
signals)

I2C,
UART,
GPIO

Power
ratings

700 mA
210–460
mA

< 500 mA 240 mA < 2000 mA < 2000 mA

Size
85.60 mm
× 56 mm

86.40 mm
× 53.3 mm

110 mm x
85 mm

92mm X
60 mm

ca.100mm
x 80mm

83x48x20
mm

Weight 45 g 39.68 g 290 g 48 g n.a. 50 g
Price
EUR

40 52 89 45 99 70

Tab. 6: Single Board Computer Overview

Raspberry Pi The Raspberry Pi has been developed by the Raspberry Pi Foundation in
2011. The main intention behind the project is to support the computer science education
in schools [RPi14a]. Since its release, more than 2 million devices were sold [RPi14b] by
licensed manufactures, mostly to technique enthusiasts around the world. Because of being a
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full-fledged computer while offering hardware interfaces like GPIOs and I2C it offers higher
user-friendliness than the cheaper Arduino. The technical features are as shown in Single
Board Computer Overview but as the first of its kind, its impact revolutionized the handling
of most computer and micro controller based DIY projects.
During this thesis the Raspberry Pi suffered from its low performing CPU and was not able
to process the 3D PointCloud data from the Asus Xtion Pro to ROS with more than 0.1𝐻𝑧.
Furthermore, the power consumption was relatively high. Moreover, it showed instabilities
during power fluctuations caused by powered USB devices.
The newly released version and nearly identically constructed successor model B+ promises
better behavior but because of its unimproved CPU still seems unsuitable for a UGV.

CubieTruck As the successor of CubieBoard 1 and CubieBoard 2 the CubieBoard 3 or its
more popular name CubieTruck seemed to be a good replacement for the Raspberry Pi.
With the A20 SoC it offers a variety of properties the Raspberry Pi would have needed.
Especially, more Random Access Memory (RAM) and onboard flash memory were promising.
While overall using less energy and the just slightly increased physical dimensions, we ran
multiple tests and achieved all requirements like Asus Xtion Pro driver compatibility and
running ROS.
On the other hand, the CubieBoard Community is significantly smaller than the Raspberry
Pi’s, which results in incomplete and sometimes even confusing documentation. This often
led to unconventional workarounds to fulfil simple tasks.

Other SBCs During this thesis multiple SBCs have been released and their progress is
steady. The UDOO and the ODROID U3 are capable of running ROS while offering better
hardware specifications. Especially the UDOO has the interesting feature of including a
separate micro controller on board, eliminating an issue we are going to examine in Pulse-
width Modulation (PWM) while being fully compatible to shields like we in brief discuss in
Motor drivers. Considering their count of sold units will be smaller by a noteworthy margin,
it can be concluded that their community and documentation status will be facing the same
issues and might be slightly worse.
For those reasons, the CubieTruck was the best tradeoff between processing power and com-
munity size.

Microcontrollers

When it comes to hardware control, timing becomes extremely relevant. One solution for this
issue are single purpose circuits. Correctly constructed setups are able to process information
very fast. On the other hand, building them requires advanced knowledge in electronics.
Furthermore, expanding once constructed circuits is an nearly unmanageable task.
Another way to solve this issue are programmable computers, like we examined in previous
sections. Especially, hardware related solutions which provide UART and I2C seem suitable,
but as normal CPUs tend to run multiple concurrent tasks at the same time, interference
between time critical tasks and computation intensive tasks can occur.
There is something in between the previously mentioned solutions: using dedicated micro
controllers with well defined clock cycles.
A perfect example for this kind of hardware is the Arduino single board programmable micro
controller family.

Arduino
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Fig. 25: the Arduino Micro
[Ard14]

By merging usually an Atmel AVR microcontroller with pro-
grammable input and output pins, including digital pins and
Pulse-width Modulation (PWM), the Arduino open hardware
solutions are often used in small electronic projects by tech-
nique enthusiasts. Because being comparably easy to program
with a simplified C language, it become a recent option for
programming education or art projects.
The Arduino hardware platform is creative commons licensed, and since the beginning in 2005
over 700 thousand official boards were sold and about the same amount of unofficial clones
[Uni13].
There is a variety of different Arduino boards available, we tested a version of the currently
most recent Arduino Micro, which is shown in Fig. 25 and beside a decent size offers
an integrated USB serial controller. By that, no additional serial programmer to write the
programs onto the flash memory is needed, like other Arduinos would require. Furthermore
communication to SBC can be established easily by USB.

3.2.4 Actuators

Actuators are devices to move or to control the movement of a robot. In our case, the moving
parts come down to a mobile base, which in ROS is described by two terminologies. First,
following REP105 the preferred term is base_link. On the other hand the PR2 example im-
plementation and therefore very commonly used one is base_footprint. Both of them describe
a propulsion system that is able to move the robot under certain perimeters.
We have already familiarized ourselves with some very popular preassembled mobile bases, like
the iRobot Create or the iClebo Kobuki used by the Willow Garage TurtleBot 2. Specifically,
Kobuki would be an ideal base for indoor environments - but with its price of around 500𝐸𝑈𝑅,
it can not be considered low cost [Rob14d]. At least, we need to verify whether it is possible
to build a less expensive mobile base. Therefore, we have a more detailed look on these mobile
bases, which mostly consist of Motors and Motor drivers.

Motors

There two types of motors: combustion motors and electronic motors. Unlike the Boston
Dynamics BigDog for our setup the maintenance, repair and overhaul of combustion engines
are just some of various reasons why they are less suitable. Hence, electric motors are be the
better choice, but they in turn, there are different types of electric motors we are now are
going to introduce.

DC Motors Direct Current (DC) motors are using a coil of wire, generating an electromag-
netic field around a centered stationary set of magnets. By switching the poles of the coil
(direction) or the current between on and off (speed) the shaft can be controlled. Furthermore,
the total amount of current sent through the motor, the coils size and the surrounding material
like electrical connections influences the mechanical characteristics of the motor[Her09]. In
our case, as we are unable to provide either a lot of current (because of the usage of batteries)
or use enough money to compensate that disadvantage, plain DC motors in general do not
have enough torque. Furthermore, they provide relatively inaccurate movement measurement
possibilities without potentiometers, because of their own momentum of inertia.
Another important point to mention is the decision between brushed and brushless DC elec-
tronic motors. Brushed DC motors use conductors between stationary and moving parts
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which quickly wear themselves out, whereas brushless DC motors use rotating electromechan-
ical magnets that need less contact to their surroundings. Furthermore, brushless usually
offer increased efficiency, reduced noise and provide longer lifetime due to no erosion occuring
on the brushes. During this thesis we experimented with two different DC motors shown in
Tab.7.

Name
maxi-
mum
torque

max
rpm

Voltage
Cur-
rent

Geared
Price
EUR

MakeBlock DC
Motor-25 6V

15 Ncm 185 4-12V 65mA no 12.36

RB-35 1:30 60Ncm 174 12V
350mA
(2A)

yes 20.00

Tab. 7: tested DC Motors Overview

Stepper Motors Stepper motors are a special type of brush-less DC motors which divide a
360 degree shaft rotation in a certain number of equal steps. Current stepper motors are bipo-
lar, which means that they consist of two separate phases containing two electronic magnets.
Each run mode, like Fullstep, Halfstep, Doublestep and MicroStep offers different torques,
angles and power consumptions well as they implement different timing pulses between the
phases. Depending on the run mode each mentioned step in turn needs between four and
eight special commands.
Below the so called holding torque the Stepper Motor would not move without any instruction.
That is the reason why these motors are often used in areas of high precision like 3D printers,
scanners or for mediums like like DVD or Blue-Ray.
During this thesis we evaluated two stepper motors for their usage as mobile robots engine
shown in Tab.8.

Name
Steps
per res-
olution

maxi-
mum
torque

max
rpm

Voltage
Cur-
rent

Geared
Price
EUR

28BYJ-
48

64 34Ncm 42 5V 92mA yes 2-4

NEMA
17

BiPolar
200 20Ncm 170 12V 700mA no 13

Tab. 8: tested Stepper Motors Overview

In summary, especially the low holding torque and high power consumption while not moving
prevents the usage of stepper motors for us. Furthermore, the maximum speed of this motor
gets limited by the clock cycle of the used controller and therefore did not reach more than
170 rpm during our experiments. Additionally the torque dropped close to zero on top speed.

Servo motors Another brushless DC motor type are servo motors. As we can see in Fig.
26 They are a combination of gears, a potentiometer and a DC motor. They usually are
capable of turning 180 degrees in each direction but with modifying the gear system can be
significantly enhanced to continuous rotational devices [Saw14].
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Fig. 26: the Servo Motor X-Ray
by Darren Sawicz Princeton
[Saw14]

Most use cases for Servo motors are exact positioning applica-
tions, like moving cameras or robot arms. Apparently, most
low cost servo motors are too weak to move an UGV of our
physical dimensions and properties. As we do not plan to move
our depth sensor other than by moving the whole robot, they
are not used in our project. Furthermore, when not adjusted
properly servo motors tend to jitter continuously as they try to
achieve an exact position but fail.

Gears Using gears has a big influence on motor properties.
The most common effects are a speed increase while accepting
a loss in maximum torque, or vice versa, lower maximum speed
decrease while gaining maximum torque. Especially in the low
cost segment, these changes in motor properties can be remarkably. Furthermore, comparing
geared motors with non geared motors brings misleading results and should be avoided as far
as possible. For example the RB-35 with a transmission of 1 : 30, which spins its internal
motors at 6000 rpm with a tiny physical force, while finally moving geared 174 rpm with an
acceptable torque of 60𝑁𝑐𝑚.

Pulse-width Modulation (PWM) DC motors can be run at different speeds by influencing
the period of being turned on during the continuous switching progress. Another example for
commonly used PWM is dimming LEDs which appear less bright when constantly switched
on and off. The time between these two phases of being turned on and off again, is called
pulse width and consequently PWM is a modulation technique that controls this width of
pulses.
As our tests showed, unstable PWMs can be a serious problem. Exceptionally occurring
on concurrent processing hardware controllers it is the the main reason why software driven
GPIOs of SBCs can not be used as constant pulse clock. As their inconsistent timings, caused
by computational requirements of other processes, are remarkably influenced. Furthermore,
software PWMs themselves require a lot of computational power. Complementary to tests
with two 64 steps per round stepper motors connected to the Raspberry Pi were surprisingly
successful, but still clearly described an upper bound.
To solve the issue of software driven timings, some controllers like the Arduino offer special
hardware PWM pins. These are connected to a dedicated electronic oscillator generating a
periodic signal. An therefore can not influenced by external computational load.
One option to outsource that task further than to programmable micro controllers are custom
circuits, which we examine in the next chapter.

Motor drivers

The maximum torque of an electronic motor is contingented to the amount of available max-
imum power which in turn is subjected to the relation between voltage and actual total
current.
Broadly speaking, with a low voltage the power flows slowly and requires a certain diameter,
called current, to supply the motor sufficiently. On the other hand, a high voltage system can
use a lower current for realizing enough power reaching the motor.
This simplified basic behavior of electricity explains the generally obtainable voltage cur-
rent constellations especially for stepper motors. Typically, power settings for the maximum
holding torque lie between 0.5𝐴 with more than 12𝑉 and 5𝐴 with voltages below 5𝑉 .
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Therefore, the electronic properties of motors remarkably differ from the usual conditions a
SBC needs. These are mostly expecting 5𝑉 at 350𝑚𝐴 to 900𝑚𝐴. Consequently, we need
different voltages in several circuits. This subsequently can come with transforming losses
that can be crucially.
One way for controlling differently voltaged circuits are optocouplers. Coming with the LED
technology, these optical isolators are able to transfer electronic signals like switching pulses
and prevent short circuits.
To solve that task efficiently without using self constructed complex circuits a type of devices
has been developed particularly over the past years: Motor drivers.
Beside the already mentioned, a motor driver needs to perform several other tasks we now
examine.
An H-Bridge is a special electronic circuit required when moving motors, both forward and
backward, by switching poles accordingly. It prevents short circuits by using four internal
switches which are often graphical representable in the shape of the letter H. They are found
in most motor driver chips in some form - mostly as integrated circuits [Wil02].
Furthermore, some motor drivers offer an abstraction of hardware PWMs. To generate dif-
ferent speeds other than the periodic pulse generated by the oscillator some hardware logic
is required to skip certain amounts of pulses. Overall, this technique is more reliable than
everything else we tested.
Another interesting point is the capability of Inter-Integrated Circuit (I2C). If a motor driver
supports this protocol, it further can be stacked together for more complex setups. To reach
each driver and motor, the bus system requires some soldered hardware connections resulting
in unique addresses.
We tested two obtainable Motor driver boards with different features.

Fig. 27: the LN298 on a
driver board [ITe11]

L298N The motor driver chip illustrated in Fig.27 consists of two
H-Bridges that are controlled by two logical signals each. Hence, it
is capable of running two DC motors at the same time. During this
thesis, we further used the LN298 to run a single bipolar stepper
motor.
The work load circuits can manage 2𝐴 of operating current, each up
to a voltage of 50𝑉 without overheating or burning [Spa]. On the
other hand, the logical power circuit processes high signals between
−0.3𝑉 and 7𝑉 consuming an for most controllers acceptable amount
of current (30𝑚𝐴 max). Consequently, it allows a wide range of
motor-controller combinations. Depending on the distributor this
board further costs below 5𝐸𝑈𝑅 and has a good availability.
In contrast to the following, the LN298 is a very simple motor driver and does not solve the
issues coming with software PWM.
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Fig. 28: the Adafruit Motor Shield v2
[Roy14]

Adafruit Motor Shield v2 The Adafruit Motor Shield v2
is based on a TB6612 MOSFET chip that includes four
separate H-Bridges. Each of its channels supports a volt-
age between 5𝑉 and 12𝑉 and allows 1.2𝐴 operating and
a 3𝐴 maximum current during peak. Configurable by a
jumper, the logic circuits can be triggered by 5𝑉 or 3.3𝑉
high signals. This makes the shield compatible to most
existing Arduino controllers.
Furthermore, the shield integrates features like the built-in
flyback diodes, which prevent damage on batteries when
the UGV is physically moved without using the connected
motors. Another helpful component is the fully dedicated
PWM driver chip.
The shield, shown in Fig.28, supports up to four bidirectional DC motors or two bipolar
stepper motors. Additionally, two more 5𝑉 Servo Motors can be connected jitter-free. Fur-
thermore, the motor shield can be stacked with up to 32 shields, controlling 64 stepper or 128
DC motors with a single microcontroller. This can be achieved by I2C which only requires a
clock and a signal wire to be operable.
Unfortunately, the software side currently does not support I2C other than being emitted by
an Arduino. It generally would be possible to port the code to a compatible SBC but would
require more work than we were able to provide during that thesis.

3.3 Further extensibility

Equally to the iRobot PackBot, some UGVs follow the concept of modularized functionality.
This often is achieved by creating autonomously working and stackable dimensional standard-
ized units attached to a cargo bay. These units can be connected to the UGV by some kind
of serial communication or without any physical connection at all using wifi, bluetooth or
similar interfaces.
Consequently, creating multiple exchangeable extension sets increases the feature-set and
allows fast reconfiguration during heterogeneous tasks.
A practical example for our robot would be to carry a special mesh communication device, like
a portable and therefore separately powered wireless router. By that, the robot could drive
to a certain position, turn it self off and keep on serving as a communication edge. When its
time to return to the base station has come, the UGV turns on again by the Ethernet wake
on lan feature. Consequently, the robot saves power and would reach higher times of service
using a single battery charge.
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4 Implementation

In this chapter we describe how to rebuild the low cost ROS compatible UGV, called a Mobile
Sensor Robot (aMoSeRo), which we developed during this thesis. The suggested setup should
be understood as a sample configuration of an inexpensive base_footprint and is the result of
our various hardware tests. Combining a simple IMU, an advanced depth sensor and a basic
motor control, this configuration can be later extended and improved modularly.

4.1 aMoSeRo Hardware

4.1.1 List of parts

The prices listed in Tab.9 are indications and vary with time and supplier.

Amount Name
Price per
unit EUR

Total
price
EUR

1 Asus Xtion Pro Live 139.90 139.90
1 CubieTruck 88.00 88.00
1 Powerbank 1x12V 2x5V USB 45.00 45.00
2 Arduino Micro 22.67 45.34
2 Motorcraft RB-35 Gear Motor 1:30 19.95 39.90
1 Sparkfun 9DOF LSM9DS0 28.51 28.51
2 Makeblock Track With Track Axle(40 Pack) 8.82 17.64
1 Adafruit Motor Shield v2 17.56 17.56
2 Pololu Universial Aluminium Mounting Hub 6mm 7.57 15.14
1 Makeblock Timing Pulley 90T Blue 4-Pack 10.00 10.00
2 Plexiglass 30cm x 30cm 5.00 10.00
1 2m aluminium angle section 90∘ 30mm x 30 mm 10.00 10.00
1 Metal Glue 8.00 8.00
1 Pack of various colored jumper wires 5.00 5.00
2 Half BreadBoards 2.50 5.00
1 Makeblock Threaded Shaft 4x39mm 4 Pack 2.00 4.00
1 Makeblock Bearing 2,00 4,00
2 USB-MicroUSB cables 2.00 4.00
1 Bidirectional Logic Level Converter 5V to 3.3V 1.95 1.95
1 PowerJack 1.7mm 1.00 1.00

Total 499,94
Tab. 9: List of required parts

In addition to the mentioned parts, some tools to cut the aluminium and the plexiglass for
example a normal and a metal saw, a 4𝑚𝑚 and a 6𝑚𝑚 metal drill and a cordless screwdriver
are required. Furthermore, electronic parts like the IMU require to get their pins soldered,
which is why a soldering bold and soldering tin should be at hand. Additionally, to sort and
fasten certain parts, some wire tie and a hot glue gun are optional.
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To run the robot on the software side at some point you are required to flash the operating
system to the onboard memory of the CubieTruck. During this thesis a 4𝐺𝐵 micro USB card
was sufficient. Furthermore, to visualize the robots sensor data or to solve computationally
intensive tasks an average Linux driven Laptop was required.
Another point to mention in order to save costs is that the official Arduino micros can be
legally replaced by unofficial clones which usually only cost a third of the original price. The
Adafruit Motor Shield v2 further is compatible to better suitable Arduino Uno Boards, where
it can simply be plugged onto.

4.1.2 Case

Physical dimensions, material and weight at an affordable price require us to construct a
custom case for the robot. To rebuild our version, start by cutting the two meter aluminium
angle section into four parts as shown in Fig.29. Arrange them for the UGV lid like shown
in Fig.31 and like shown in Fig.32 for the corresponding bottom. After that, glue the
arrangements together following the glues specific instructions. Meanwhile the glue is curing,
carefully cut the glass into two pieces, like illustrated on Fig.30. Later hot glue them inside
the bottom and lid.

Fig. 29: aMoSeRo aluminium angle sections to be cut
four times each

Fig. 30: the aMoSeRo plexiglass dimensions

To fix the motors, we drill two 6𝑚𝑚 diameter holes as illustrated in Fig.35. Next, we insert
them carefully and further fix them with hot glue or ties if required. As a next step, we attach
the wheels to the motors coil using the Pololu Universial Aluminium Mounting Hub. After
that, we drill two 4𝑚𝑚 wholes into the other side, and connect the front wheels using the
corresponding construction kit. Finally, we build the tracks by connection the track parts
with their bolds and tightly laying them around the wheels.
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Fig. 31: the aMoSeRo lid without plexiglass
Fig. 32: the aMoSeRo bottom without plexiglass

4.1.3 Wiring schematic

Motor Driver

The Adafruit Motor Shield v2 is very well documented by its producer Adafruit. We follow
their basic tutorials and connect all parts like illustrated in Fig.33.

Fig. 33: the Adafruit Motorshield v2 Wiring created with Fritzing

LSM9DS0

As introduced in section 3.2.1, the LSM9DS0 is an inexpensive 9DOF IMU. It operates
at 3.3𝑉 and therefore requires a special wiring circuit including a bidirectional logic level
converter. This is capable of transferring the 5𝑉 I2C signals to the 3.3𝑉 LSM9DS0 in both
directions. It would be possible to construct a circuit of this kind on our own, but using a
pre-assembled variant is easier to reproduce and also cheaper in small amounts.
When placed in the robot, the coordinate systems printed on the chip must be kept in mind.
These need to fit the REP103. Consequently, the direction of travel corresponding to the
wiring schematic Fig.34 is right to left.
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Fig. 34: the Inertial Measurement Unit (IMU) wiring created with Fritzing

4.1.4 Combination

We arranged all parts like the following Fig.35 and Fig.36 suggests.

Fig. 35: the aMoSeRo 3D model open lid Fig. 36: the aMoSeRo real robot open lid

4.2 aMoSeRo ROS package

The aMoSeRo package is a distributed system consisting of at least two computers.
First, the robot itself which runs Lubuntu 13.04 in combination with ROS Hydro. At the
beginning of this thesis, this was the latest ROS version. Later, ROS got updated to ROS
Indigo component wise, which when transferred to the robot and its ARMv7 architecture
resulted in an unstable system. Additionally, the current package manager situation lead to
the decision to stay on ROS Hydro for the aMoSeRo.
Second, the processing device is any ROS Indigo compatible Ubuntu x86 Laptop which is
responsible for calculating advanced and therefore computationally intensive tasks like SLAM
or for combining different odometry data. Furthermore, it is the human visualization screen
and interfaces different control sensors to the robot.
The aMoSeRo package is a ROS metapackage and contains several packages which we will
now delve into.

4.2.1 amosero_description

In order to interface the ROS tf2 package, the aMoSeRo needs a valid URDF file. It con-
tains frame and joint relations and therefore is the base for various tasks. As a member of
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amosero_description the file gets cross-referenced in nearly all other thesis dependent pack-
ages. These tasks include visualization, simulation, transformation, navigation and collusion
avoidance.

4.2.2 amosero_bringup

The aMoSeRo bringup package contains all required launch files to get the robot fully opera-
tional. It therefore offers following launch files:

xtion.launch starts the camera nodelet manager and publishes all available topics into the
/camera node. Separately, the zero copy depthimage_to_laserscan nodelet man-
ager gets initialized and offers a two dimensional /scan topic.

motor.launch launches the serial communication rosnode to communicate with the Arduino
connected to the motor shield, it subscribes the /right_motor and the /left_motor
topic. Those accept values between 0 and 510 to control the motors speed and direction.

odometry.launch combines all odometry related launch files and starts them together.

tf_broadcast.launch starts the tf broadcasting nodes robot_state_publisher and
joint_state_publisher and publishes messages in the tf tree below the base_footprint.
Furthermore, it transforms geometry/Twist messages into valid motor commands by
publishing the according topics as well as it calculates the /odom topic accordingly.

gps.launch launches the nmea node and defaults to the device /dev/ttyUSB0. Odometry
related information get normalized and published into the /vo topic

imu.launch starts the lsm9ds0_imu_9dof node, which manages the serial connection to the
Arduino connected to the IMU and was specifically created for this thesis. The data
gets published at the /imu_data topic.

robot_pose_ekf.launch combines /vo and /imu_data with /odom and uses kalman fil-
ters to create the /robot_pose_ekf/odom_combined topic.

Most launch files use defaults but can be started with different parameters. For details, see
the comments in the source files. Another point to mention is that hardware related launch
files need to be started on the aMoSeRo with root rights. Furthermore, we suggest using a
shell session management tool like screen or setting up proper system services.

4.2.3 amosero_teleop

The aMoSeRo teleop package’s main task is generating /cmd_vel messages of the type
geometry/Twist according to different input devices.

teleop_keyboard.py creates the /cmd_vel according to keyboard inputs.

teleop_ps3.py creates the /cmd_vel according to Playstation 3 inputs.

teleop_xbox.py creates the /cmd_vel according to Microsoft Xbox inputs.

teleop_joystick.py creates the /cmd_vel according to the /joy topic.
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4.2.4 amosero_navigation

The aMoSeRo navigation package offers following launch files.

gmapping_demo.py starts mapping_server and initializes move_base before attaching to
its main functionality, which are SLAM algorithms based on openSLAM. It uses
/odom_combined and /scan as input sources and publishes base_footprint to /map
tf relation.

acml_launch.py creates local and global cost maps according to the robots dimensions and
provides basic planning functionality.

The full TF Tree is shown in the appendix aMoSeRo ROS TF Tree. Furthermore, the
aMoSeRo capabilities graph is illustrated in appendix aMoSeRo ROS Capabilities Graph.

4.2.5 amosero_viz

The aMoSeRo viz package contains default rviz configuration files, which are plain text files.
Other packages are referring to this packages in different launch files. It is common practice
to use a separate visualization packages for ROS robots, which easily can be explained by
the behavior of collaborative tools like git, where user-dependend and therefore frequently
changed files should be separated from the source to avoid unnecessary merges or at least
confusion. This also is the main reason why we followed that principle.

4.3 aMoSeRo Microcontroller

Motor Shield

We need to transfer the motor_shield_v2.ino on the Arduino connected to the Adafruit Motor
Shield v2. After starting the corresponding motor.launch file the Arduino subscribes to the
/left_motor and /right_motor accepting normalized Int16 values between 0 and 255 as
motor speeds with direction forward and 256 to 511 with direction backwards.

LSM9DS0

The second Arduino requires to be programmed with LSM9DS0_SimpleCSV.ino which is
located in the Arduino folder of the LSM9DS0 package. The fundamental functionality equals
other IMU drivers e.g. the 9DRazor.
Unfortunately sometimes our setup randomly froze. Hence, it required a hardware reset when
the data flow got stuck, which automatically gets handled by software. During this thesis it
was not possible to determine if this behavior is limited on our physical devices or if other
IMUs are faced with it as well.

Simple sensors

We further tested various simple sensors like the LM35 which is capable of recording temper-
ature over time. The example source code, which runs on the Arduino, can also be found in
the appendix Arduino Micro Sample temperature sensor LM35.
Moreover, we experimented with a DHT11 Temperature sensor, a HC-SR04 Ultrasonic Range
Scanner and a BMP180 Barometer, which source code can be found in the amosero_bringup
package.
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5 Evaluation

In this chapter we are going to evaluate the robots capabilities. Therefore, the primary
goal of the following experiments is to determine the limitations of aMoSeRo and research
improvement possibilities.

5.1 aMoSeRo 2D Laser scan frame rates

An important property of an UGV is the rate of data creation. A low rate influences most
higher algorithms leads to incorrect results. In our case especially the depth sensors are
required to publish sufficient material to create detailed maps. Therefore the first experiment
is examining the hardware limitations of the aMoSeRo.
The Asus Xtion Pro driver OpenNi2 and the ROS package openni2_camera offers multiple
run modes which can be set by dynamic_reconfigure. Another essential option influencing
performance is the data_skip parameter, which allows the system to skip a certain amount
of pictures the hardware produces before loading them into memory and by that remarkably
reduces computational load. It can be set to an integer value between zero, which means not
to skip any frames at all, and ten, leading to every eleventh frame to be processed.
The different combinations of resolutions, maximum frequencies and the data_skip-parameter
ran on the aMoSeRo is illustrated in Tab.10. As it can be seen, especially the amount of
frames that has to be processed per second highly influences the complete system.

Runmode(ID) Resolution data_skip CPU avail. rate hz operational
SXGA_30Hz(1) 1280x1024 - - not applicable (n.a.) -
SXGA_15Hz(2) 1280x1024 - - n.a. -
XGA_30Hz(3) 1280x720 - - n.a. -
XGA_15Hz(4) 1280x720 - - n.a. -
VGA_30Hz(5) 640x480 10 95 / 80 1.9 yes
VGA_30Hz(5) 640x480 0 99 / 99 6.74 no
VGA_25Hz(6) 640x480 10 93 / 88 1.9 yes
VGA_25Hz(6) 640x480 2 89 / 88 8.2 yes
VGA_25Hz(6) 640x480 0 92 / 99 9.12 no
QVGA_25Hz(7) 320x240 10 65 / 60 2.26 yes
QVGA_25Hz(7) 320x240 0 80 / 90 25.00 yes
QVGA_30Hz(8) 320x240 10 70 / 52 2.5 yes
QVGA_30Hz(8) 320x240 0 80 / 93 30.0 yes
QVGA_60Hz(9) 320x240 10 87 / 70 4.83 yes
QVGA_60Hz(9) 320x240 0 99 / 99 30.24 no

QQVGA_25Hz(10) 160x120 - - n.a. -
QQVGA_30Hz(11) 160x120 - - n.a. -
QQVGA_60Hz(12) 160x120 - - n.a. -

Tab. 10: openni2_camera runmodes system influence

Furthermore, higher resolutions cause higher computational demand, which is a problem
when building a low cost setup. But as we will learn during the following experiment, a high
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resolution of the laser scan is preferable. On the other hand a system with an average load
of more than 90 percent per core can not be considered as fully operational, because when
faced with this situation, the robot behaves delayed or even skips teleoperational command
executions.
After various tests balancing the given parameters the best tradeoff between quality and rate
was run mode with the ID six VGA_25hz with a data_skip-value between one and three.
By that, data rates up to 8.2𝐻𝑧 have been reached while keeping the processors below the
mentioned line of inoperability.
Furthermore, we highly recommend to use a process priority management tool like nice and
give motor control the highest priority to achieve the same results.
This experiment showed direct correlations to the 3D PointCloud topics as the depthim-
age_to_laserscan ROS package originates its data from /camera/depth/image.

5.2 aMoSeRo 2D SLAM

The previous experiment showed how careful we need to tread the aMoSeRo setup in cases of
performance. To further save resources and because the common solutions did not apply suc-
cessfully by generating to much computational load, we were obligated to transfer the /scan
topic into a separate nodelet manager. By that we could achieve a lazy subscription feature,
that remarkably profited from zero copy parameter handling and only required resources when
subscribed.
To start the experiment of openSLAM, we bring the aMoSeRo up and launch the
aMoSeRo navigation package on a separate powerful computer. The second computer is
required to provide all non-obligatory packages and libraries. In particular the currently non-
ARM compatible, mostly advanced math and therefore complex to port sources need the
second computer to be x86 -compatible.
We started the robot in a square room, followed by an ordinary indoor office floor. Equipped
with the 9DOF IMU, the Asus Xtion Pro and its calculated odometry information the robot
soon revealed its demand of high data flow frequencies.
As the results illustrate in Fig.37, missing edges and magnetic field influences like office pe-
ripherals in combination with frequencies below 2𝐻𝑧 and a lot of spot turns lead to improvable
results.
When increasing the publishing rates by the methods we mentioned in the previous experiment
and furthermore slowing down turning movements my limiting their speed by software, the
created maps significantly got better. This shown in Fig.38.

Fig. 37: 2D Slam low data flow frequencies Fig. 38: 2D Slam high data flow frequencies
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5.3 aMoSeRo 3D PointCloud Maps

During that thesis the requirement of creating bigger point clouds based on two dimensional
slamming has been created. As shown, the aMoSeRo is currently not capable of serving high
resolution 3D PointClouds at a decent rate while staying fully operational. To still fulfill
the requirement, we created a special replay server. Whenever the user pulls a trigger, like
in our case a keyboard input while teleoperating, a special node subscribes the /camer-
a/depth/image topic for a single frame. After two to three seconds the snapshot appears in
visualization and the robot can move again. Repeating the task at different locations on the
map enables the low cost robot to create 3D PointClouds like they are illustrated in Fig.39,
Fig.40 and Fig.41.

Fig. 39: 3D PointCloud Map based on 2D Slam with
two snapshots

Fig. 40: 3D PointCloud Map based on 2D Slam with
five snapshots

Fig. 41: 3D PointCloud Map based on 2D Slam with five snapshots
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6 Conclusion

In this thesis we introduced a new way to create UGVs. In contrast to previous approaches
we completely avoided to use expensive parts in all components and replaced them with
low cost alternatives. We therefore were weighing the pros and cons of self-written software
against using different existing Robotic Software Environments and found a free software
solution fulfilling our needs in ROS. Moreover, we introduced existing mobile robots and their
features, inspecting them for similarities and in order to find functional hardware modules.
We furthermore delved into these modules, provided basic knowledge to understand their
main characteristics and discussed them in the low cost context.
Subsequently, we described a step by step implementation and finally implemented a low cost
UGV. The proof of concept called aMoSeRo combines smartphone technology with mass
produced gaming hardware and a custom mobile base. Arising thereby, we were obligated to
find creative ways to port and create drivers, ROS packages and to solve various issues, which
we documented mostly separately from this thesis [Pet14].
We further evaluated the newly created robot on its capabilities and limitations and optimized
certain parameters and circumstances in order to fulfil the demands of higher algorithms like
SLAM and 3D PointClouds.
Another essential point to mention is that each module of the aMoSeRo can be improved with
better or additional parts to fulfil the tasks it is currently not capable of. For example, when
it is required to sustain a higher rate of data flow per second, you can replace the current
SBC, or add another dedicated device.
In our case we additionally thought of using the aMoSeRo in a mining context. As you see in
Fig.42 water can be an issue we would need to solve with an IP67 sealed case. Furthermore
rails and sludge would require stronger motors, as it is illustrated in Fig.43.
To summarize, our new approach successfully showed that robotics do not need to be restricted
to well founded projects only. A new generation of applications, like a trail of small support
robots for providing mesh network communication but with the ability to track sensor data
in dangerous environments or to locate themselves, is now as well possible as the usage of a
simple ROS robot that is cheaper than the educational TurtleBot.

Fig. 42: Water in Mining - Mining RoX Project Fig. 43: Sludge and rails - Mining RoX Project
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Acronyms

3D three dimensional

AGV Automated Guided Vehicle

aMoSeRo a Mobile Sensor Robot

API application programming interface

AUVSI Association for Unmanned Vehicle Systems International

BSD Berkeley Software Distribution

CCR Concurrency and Coordination Runtime

CI Continuous Integration

CPU Central Processing Unit

CSAIL Computer Science and Artificial Intelligence Laboratory

DARPA Defense Advanced Research Projects Agency

DC Direct Current

DIY Do it yourself

DFG Deutsche Forschungsgemeinschaft [DFG14]

DOF Degrees of Freedom

DSS Decentralized Software Service

GPIO General-Purpose Input/Output

GPL GNU General Public License

GPS Global Positioning System

GUI Graphical User Interface

Hector Heterogeneous Cooperating Team of Robots

IFR International Federation of Robotics

IDE Integrated Development Environment

IMU Inertial Measurement Unit

I2C Inter-Integrated Circuit

LAMI Laboratoire de Micro-Informatique

Lidar Light radar

Laser light amplification by stimulated emission of radiation [Dic14]

LS3 Legged Squad Support System
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MRDS Microsoft Robotics Developer Studio

MIT Massachusetts Institute of Technology

mph miles per hour

n.a. not applicable

NOAA National Oceanic and Atmospheric Administration

OCU Operator Control Unit

OLPC One Laptop Per Child Program [one14]

OpenCV Open Source Computer Vision

OS Operating System

OSL Open Software License [Ini14]

OSRF Open Source Robotics Foundation

PWM Pulse-width Modulation

RADAR RAdio Detection And Ranging

RAM Random Access Memory

REF Rapid Equipment Force

REP ROS Enhancement Proposal

REST Representational State Transfer

ROI Roomba Open Interface

ROS Robot Operating System

rpm rounds per minute

SBC Single Board Computer

SAIL Stanford Artificial Intelligence Laboratory

SLAM Simultaneous Localization and Mapping

SPARK Starter Programs for the Advancement of Robotics Knowledge

STAIR STanford Artificial Intelligence Robot

STEM Science, Technology, Engineering and Math

SoC System on a Chip

SPI Serial Peripheral Interface

TF Transformation

TDD Test Driven Development
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UART Universal Asynchronous Receiver/Transmitter

UGV Unmanned Ground Vehicle

URDF Unified Robot Description Format

USB Universal Serial Bus

VOR Visual Object Recognition

VPL Visual Programming Language

vSLAM visual Simultaneous Localization and Mapping

XACRO XML Macros

XML eXtensible Markup Language
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Appendix

Arduino Micro Sample temperature sensor LM35

f l o a t temp ;
i n t tempPin = 4 ;

void setup ( )
{

S e r i a l . begin ( 9600 ) ;
}

void loop ( )
{

temp = analogRead ( tempPin ) ;
temp = temp * 0 .48828125 ;
S e r i a l . p r i n t ("TEMPRATURE = " ) ;
S e r i a l . p r i n t ( temp ) ;
S e r i a l . p r i n t ("*C" ) ;
S e r i a l . p r i n t l n ( ) ;
de lay ( 1000 ) ;

}
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aMoSeRo ROS TF Tree
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aMoSeRo ROS Capabilities Graph

The graph is simplified and only contains active topics (not all subscribable).
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